phs-galaxy/ShootyEnemy.gd

71 lines
2.0 KiB
GDScript

extends KinematicBody
export(NodePath) var player_node
onready var player = get_node(player_node)
export(NodePath) var solar_system_node
onready var solar_system = get_node(solar_system_node)
var bullet_scene = preload("res://Bullet.tscn")
var bullet_velocity = 40.0
var target
var velocity := Vector3(0.0, 1.0, 1.0)
func _ready():
$ShotTimer.connect("timeout", self, "shoot_bullet")
func _physics_process(delta):
# Project the player's position into the future
target = _get_future_position(
player.get_center(),
player.velocity - velocity
)
if target:
var gravity = solar_system.get_gravitation_acceleration(global_transform.origin)
look_at(target, gravity)
global_transform.origin += velocity * delta
func shoot_bullet():
if not target:
# Player can't be hit right now, abort
return
var instance = bullet_scene.instance()
get_tree().get_root().add_child(instance)
instance.global_transform.origin = global_transform.origin - global_transform.basis.z
instance.velocity = velocity + (target - global_transform.origin).normalized() * bullet_velocity
func _get_future_position(position, velocity):
# Solution to the quadratic formula gives us the time at which the player would be hit
# TODO: Take acceleration into account as well!
var a = pow(velocity.x, 2) + pow(velocity.y, 2) + pow(velocity.z, 2) - pow(bullet_velocity, 2)
var b = 2 * (velocity.x * (position.x - global_transform.origin.x)
+ velocity.y * (position.y - global_transform.origin.y)
+ velocity.z * (position.z - global_transform.origin.z))
var c = pow(position.x - global_transform.origin.x, 2.0) \
+ pow(position.y - global_transform.origin.y, 2.0) \
+ pow(position.z - global_transform.origin.z, 2.0)
var discriminant = pow(b, 2) - 4 * a * c
if (discriminant < 0): return null # Can't hit the target :(
var t1 = (-b + sqrt(discriminant)) / (2 * a)
var t2 = (-b - sqrt(discriminant)) / (2 * a)
# Choose the smallest positive t value
var t = min(t1, t2)
if t < 0: t = max(t1, t2)
return position + t * velocity