Rough cout implementation of ray intersection order

The order in which nodes are checked seems to be correct
This commit is contained in:
karl 2020-12-28 16:00:29 +01:00
parent c72dde9b84
commit 71841766f1
2 changed files with 63 additions and 5 deletions

View File

@ -1,5 +1,6 @@
#include <algorithm> #include <algorithm>
#include <glm/glm.hpp> #include <glm/glm.hpp>
#include <iostream>
#include <string> #include <string>
#include <vector> #include <vector>
@ -32,6 +33,19 @@ struct Point {
Point(float coordinates[3], Triangle *triangle) Point(float coordinates[3], Triangle *triangle)
: coordinates(coordinates), triangle(triangle) {} : coordinates(coordinates), triangle(triangle) {}
Point operator+(const Point &other) const {
return Point(new float[3]{coordinates[0] + other.coordinates[0],
coordinates[1] + other.coordinates[1],
coordinates[2] + other.coordinates[2]},
nullptr);
}
Point operator*(float scalar) const {
return Point(
new float[3]{coordinates[0] * scalar, coordinates[1] * scalar, coordinates[2] * scalar},
nullptr);
}
float *coordinates; float *coordinates;
Triangle *triangle; Triangle *triangle;
@ -116,11 +130,52 @@ class KDTree {
} }
Point *intersect_ray_recurse(Ray ray, Node *node) { Point *intersect_ray_recurse(Ray ray, Node *node) {
// Intersect ray with the point's splitting plane // Exit condition: There was no collision
// If there is an intersection: Recurse to both children (but the nearer one first) if (node == nullptr) { return nullptr; }
// Otherwise: Recurse only to the nearer one
return node->point; // TODO // Is the left or right child node closer to this point?
Node *near = ray.origin[node->axis] > node->point->coordinates[node->axis] ? node->right
: node->left;
Node *far = near == node->right ? node->left : node->right;
std::cout << "Checking " << node->point->coordinates[0] << ", "
<< node->point->coordinates[1] << ", " << node->point->coordinates[2] << ", "
<< std::endl;
// Intersect ray with the point's splitting plane
// Are they parallel? If so, recurse only to the nearer side
if (ray.direction[node->axis] == 0.0) {
return intersect_ray_recurse(ray, near);
} else {
// They are not parallel, so check where the intersection occurs
float t = (node->point->coordinates[node->axis] - ray.origin[node->axis]) /
ray.direction[node->axis];
if (t >= 0.0) {
// t is positive, so we need to recurse to both children if the nearer one does not
// result in a collision
Point *first_attempt = intersect_ray_recurse(ray, near);
if (first_attempt != nullptr) {
return first_attempt;
} else {
// The first attempt did not work, so recurse to the other side too.
// For this, calculate a new ray origin ...
float new_origin[3]{ray.origin[0] + t * ray.direction[0],
ray.origin[1] + t * ray.direction[1],
ray.origin[2] + t * ray.direction[2]};
// ... and continue towards that direction, but with the new origin (we can
// leave behind what we already checked)
return intersect_ray_recurse(Ray(new_origin, ray.direction), far);
}
} else {
// We only have to check the nearer one, as the other side can't be reached by the
// ray
return intersect_ray_recurse(ray, near);
}
}
} }
void to_string_recurse(std::string &str, Node *node, int depth) { void to_string_recurse(std::string &str, Node *node, int depth) {

View File

@ -8,11 +8,14 @@ int main() {
std::vector<Point *> points{new Point(new float[3]{0.0, 0.0, 0.0}, nullptr), std::vector<Point *> points{new Point(new float[3]{0.0, 0.0, 0.0}, nullptr),
new Point(new float[3]{0.0, 1.0, 0.0}, nullptr), new Point(new float[3]{0.0, 1.0, 0.0}, nullptr),
new Point(new float[3]{0.0, 2.0, 3.0}, nullptr), new Point(new float[3]{0.0, 2.0, 3.0}, nullptr),
new Point(new float[3]{1.0, 0.0, 4.0}, nullptr)}; new Point(new float[3]{1.0, 0.0, 4.0}, nullptr),
new Point(new float[3]{1.0, -1.0, 8.0}, nullptr)};
KDTree tree = KDTree(points); KDTree tree = KDTree(points);
std::cout << tree.to_string(); std::cout << tree.to_string();
tree.intersect_ray(Ray(new float[3]{0.0, 0.0, 5.0}, new float[3]{0.0, 0.0, -1.0}));
return 0; return 0;
} }