kdtree/kdtree.h
karl 71841766f1 Rough cout implementation of ray intersection order
The order in which nodes are checked seems to be correct
2020-12-28 16:00:29 +01:00

195 lines
6.6 KiB
C++

#include <algorithm>
#include <glm/glm.hpp>
#include <iostream>
#include <string>
#include <vector>
// Forward declarations
struct Node;
struct Point;
struct Triangle;
struct Node {
Node(int axis, Point *point, Node *left, Node *right)
: axis(axis), point(point), left(left), right(right) {}
int axis;
Point *point;
Node *left;
Node *right;
};
struct Triangle {
Triangle(Point *p1, Point *p2, Point *p3) : p1(p1), p2(p2), p3(p3) {}
Point *p1;
Point *p2;
Point *p3;
};
struct Point {
Point(float coordinates[3], Triangle *triangle)
: coordinates(coordinates), triangle(triangle) {}
Point operator+(const Point &other) const {
return Point(new float[3]{coordinates[0] + other.coordinates[0],
coordinates[1] + other.coordinates[1],
coordinates[2] + other.coordinates[2]},
nullptr);
}
Point operator*(float scalar) const {
return Point(
new float[3]{coordinates[0] * scalar, coordinates[1] * scalar, coordinates[2] * scalar},
nullptr);
}
float *coordinates;
Triangle *triangle;
};
struct Ray {
Ray(float origin[3], float direction[3]) : origin(origin), direction(direction) {}
float *origin;
float *direction;
};
class KDTree {
public:
KDTree(std::vector<Point *> points) { root = build(points, 0); }
~KDTree() = default; // TODO: Delete all allocated Nodes
Point *intersect_ray(Ray ray) { return intersect_ray_recurse(ray, root); }
std::string to_string() {
std::string str = "";
to_string_recurse(str, root, 0);
return str;
}
private:
Node *root;
int MAX_DEPTH = 500;
// Returns a comparator lambda for assessing which of the two points has a
// greater coordinate in the given axis.
auto get_point_comparator(int axis) {
return [axis](Point *p1, Point *p2) {
return p1->coordinates[axis] < p2->coordinates[axis];
};
}
Node *build(std::vector<Point *> points, int depth) {
// Exit conditions
if (points.empty() || depth > MAX_DEPTH) { return nullptr; }
// Select axis by choosing the one with maximal extent
float max_extent = 0;
int axis = 0;
for (int it_axis = 0; it_axis < 3; it_axis++) {
// Get extent along this axis
auto comparator = get_point_comparator(it_axis);
Point *min = *std::min_element(points.begin(), points.end(), comparator);
Point *max = *std::max_element(points.begin(), points.end(), comparator);
float extent = max->coordinates[it_axis] - min->coordinates[it_axis];
// Is it greater than max_extent?
if (extent > max_extent) {
// If so, make this the splitting axis
max_extent = extent;
axis = it_axis;
}
}
// Choose the median as the pivot and sort the points into
// left-of-median and right-of-median using nth_element
int middle = points.size() / 2;
std::nth_element(points.begin(), points.begin() + middle, points.end(),
get_point_comparator(axis));
Point *median = points[middle];
// TODO: This copies. Can we split the vector into two without copying?
std::vector<Point *> left_of_median(points.begin(), points.begin() + middle);
std::vector<Point *> right_of_median(points.begin() + middle + 1, points.end());
// Create node, recursively call to construct subtree
return new Node(axis, median, build(left_of_median, depth + 1),
build(right_of_median, depth + 1));
}
Point *intersect_ray_recurse(Ray ray, Node *node) {
// Exit condition: There was no collision
if (node == nullptr) { return nullptr; }
// Is the left or right child node closer to this point?
Node *near = ray.origin[node->axis] > node->point->coordinates[node->axis] ? node->right
: node->left;
Node *far = near == node->right ? node->left : node->right;
std::cout << "Checking " << node->point->coordinates[0] << ", "
<< node->point->coordinates[1] << ", " << node->point->coordinates[2] << ", "
<< std::endl;
// Intersect ray with the point's splitting plane
// Are they parallel? If so, recurse only to the nearer side
if (ray.direction[node->axis] == 0.0) {
return intersect_ray_recurse(ray, near);
} else {
// They are not parallel, so check where the intersection occurs
float t = (node->point->coordinates[node->axis] - ray.origin[node->axis]) /
ray.direction[node->axis];
if (t >= 0.0) {
// t is positive, so we need to recurse to both children if the nearer one does not
// result in a collision
Point *first_attempt = intersect_ray_recurse(ray, near);
if (first_attempt != nullptr) {
return first_attempt;
} else {
// The first attempt did not work, so recurse to the other side too.
// For this, calculate a new ray origin ...
float new_origin[3]{ray.origin[0] + t * ray.direction[0],
ray.origin[1] + t * ray.direction[1],
ray.origin[2] + t * ray.direction[2]};
// ... and continue towards that direction, but with the new origin (we can
// leave behind what we already checked)
return intersect_ray_recurse(Ray(new_origin, ray.direction), far);
}
} else {
// We only have to check the nearer one, as the other side can't be reached by the
// ray
return intersect_ray_recurse(ray, near);
}
}
}
void to_string_recurse(std::string &str, Node *node, int depth) {
if (node == nullptr) { return; }
Point *point = node->point;
str += std::string(depth, '-') + std::to_string(point->coordinates[0]) + ", " +
std::to_string(point->coordinates[1]) + ", " +
std::to_string(point->coordinates[2]) + " with axis " + std::to_string(node->axis) +
"\n";
to_string_recurse(str, node->left, depth + 1);
to_string_recurse(str, node->right, depth + 1);
}
};