ecsgame/Util/kdtree.h
2021-01-16 22:28:34 +01:00

229 lines
8.6 KiB
C++

#pragma once
#include "geometry.h"
#include <algorithm>
#include <chrono>
#include <glm/glm.hpp>
#include <iostream>
#include <string>
#include <vector>
class KDTree {
public:
KDTree(std::vector<Point *> points) {
std::cout << "Building tree with " << points.size() << " points took ";
auto start = std::chrono::high_resolution_clock::now();
root = build(points, 0);
auto end = std::chrono::high_resolution_clock::now();
std::cout << std::chrono::duration_cast<std::chrono::microseconds>(end - start).count()
<< " microseconds" << std::endl;
}
~KDTree() = default; // TODO: Delete all allocated Nodes
const Triangle *intersect_ray(const Ray ray, Vector &result) {
auto start = std::chrono::high_resolution_clock::now();
float nearest = 1000.0; // Initial max distance
const Triangle *nearest_triangle = nullptr;
intersect_ray_recurse(nearest_triangle, result, ray, root, 0, nearest);
auto end = std::chrono::high_resolution_clock::now();
std::cout << "Intersection took "
<< std::chrono::duration_cast<std::chrono::microseconds>(end - start).count()
<< " microseconds" << std::endl;
return nearest_triangle;
}
std::string to_string() {
std::string str = "";
to_string_recurse(str, root, 0);
return str;
}
std::vector<Vector> get_lines() {
std::vector<Vector> lines;
float mins[3] = {-1000, -1000, -1000};
float maxs[3] = {1000, 1000, 1000};
get_lines_recursive(lines, root, mins, maxs);
return lines;
}
private:
Node *root;
int MAX_DEPTH = 500;
// Returns a comparator lambda for assessing which of the two points has a
// greater coordinate in the given axis.
auto get_point_comparator(int axis) {
return [axis](Point *p1, Point *p2) {
return p1->pos[axis] < p2->pos[axis];
};
}
Node *build(std::vector<Point *> points, int depth) {
// Exit conditions
if (points.empty() || depth > MAX_DEPTH) { return nullptr; }
// Select axis by choosing the one with maximal extent
float max_extent = 0;
int axis = 0;
for (int it_axis = 0; it_axis < 3; it_axis++) {
// Get extent along this axis
auto comparator = get_point_comparator(it_axis);
Point *min = *std::min_element(points.begin(), points.end(), comparator);
Point *max = *std::max_element(points.begin(), points.end(), comparator);
float extent = max->pos[it_axis] - min->pos[it_axis];
// Is it greater than max_extent?
if (extent > max_extent) {
// If so, make this the splitting axis
max_extent = extent;
axis = it_axis;
}
}
// Choose the median as the pivot and sort the points into
// left-of-median and right-of-median using nth_element
int middle = points.size() / 2;
std::nth_element(points.begin(), points.begin() + middle, points.end(),
get_point_comparator(axis));
Point *median = points[middle];
// TODO: This copies. Can we split the vector into two without copying?
std::vector<Point *> left_of_median(points.begin(), points.begin() + middle);
std::vector<Point *> right_of_median(points.begin() + middle + 1, points.end());
// Create node, recursively call to construct subtree
return new Node(axis, median, build(left_of_median, depth + 1),
build(right_of_median, depth + 1));
}
void intersect_ray_recurse(const Triangle *&nearest_triangle, Vector &result, Ray ray,
Node *node, int depth, float &nearest) {
// Exit condition: This node was iterated towards, but does not exist
if (node == nullptr) { return; }
// Check for a collision here
// Iterate over all Triangles which this Point is involved in
for (const Triangle *triangle : node->point->triangles) {
Vector current_result(0, 0, 0);
float current_distance;
// If we have a collision, and it is closer to the ray origin than the closest previous
// collision, remember it
if (ray.intersects_triangle(triangle, current_result, current_distance)) {
if (current_distance < nearest) {
nearest = current_distance;
nearest_triangle = triangle;
result = current_result;
}
}
}
// Is the ray origin within the left or right child node bounding box?
Node *near =
ray.origin[node->axis] > node->point->pos[node->axis] ? node->right : node->left;
Node *far = near == node->right ? node->left : node->right;
if (ray.direction[node->axis] == 0.0) {
// The ray is parallel to the splitting axis, so we only need to check within this box.
intersect_ray_recurse(nearest_triangle, result, ray, near, depth + 1, nearest);
} else {
// Calculate the distance from the ray origin to the splitting axis
float t =
(node->point->pos[node->axis] - ray.origin[node->axis]) / ray.direction[node->axis];
// Check this side for intersections up to the distance of the currently best
// intersection
intersect_ray_recurse(nearest_triangle, result, ray, near, depth + 1, nearest);
// If the far side is closer than the distance to the best current intersection, check
// that side too
if (t < nearest) {
intersect_ray_recurse(nearest_triangle, result, ray, far, depth + 1, nearest);
}
}
}
void to_string_recurse(std::string &str, Node *node, int depth) {
if (node == nullptr) { return; }
Point *point = node->point;
str += std::string(depth * 2, ' ') + std::to_string(point->pos[0]) + ", " +
std::to_string(point->pos[1]) + ", " + std::to_string(point->pos[2]) +
" with axis " + std::to_string(node->axis) + "\n";
to_string_recurse(str, node->left, depth + 1);
to_string_recurse(str, node->right, depth + 1);
}
void get_lines_recursive(std::vector<Vector> &lines, Node *node, float mins[3], float maxs[3]) {
if (node == nullptr) return;
int axis = node->axis;
// Add lines for this node
// We add a whole bounding box, so we need 8 points -> 12 lines
lines.emplace_back(Vector(mins[0], mins[1], mins[2]));
lines.emplace_back(Vector(maxs[0], mins[1], mins[2]));
lines.emplace_back(Vector(maxs[0], mins[1], mins[2]));
lines.emplace_back(Vector(maxs[0], maxs[1], mins[2]));
lines.emplace_back(Vector(maxs[0], maxs[1], mins[2]));
lines.emplace_back(Vector(mins[0], maxs[1], mins[2]));
lines.emplace_back(Vector(mins[0], maxs[1], mins[2]));
lines.emplace_back(Vector(mins[0], mins[1], mins[2]));
lines.emplace_back(Vector(mins[0], mins[1], maxs[2]));
lines.emplace_back(Vector(maxs[0], mins[1], maxs[2]));
lines.emplace_back(Vector(maxs[0], mins[1], maxs[2]));
lines.emplace_back(Vector(maxs[0], maxs[1], maxs[2]));
lines.emplace_back(Vector(maxs[0], maxs[1], maxs[2]));
lines.emplace_back(Vector(mins[0], maxs[1], maxs[2]));
lines.emplace_back(Vector(mins[0], maxs[1], maxs[2]));
lines.emplace_back(Vector(mins[0], mins[1], maxs[2]));
lines.emplace_back(Vector(mins[0], mins[1], mins[2]));
lines.emplace_back(Vector(mins[0], mins[1], maxs[2]));
lines.emplace_back(Vector(maxs[0], mins[1], mins[2]));
lines.emplace_back(Vector(maxs[0], mins[1], maxs[2]));
lines.emplace_back(Vector(mins[0], maxs[1], mins[2]));
lines.emplace_back(Vector(mins[0], maxs[1], maxs[2]));
lines.emplace_back(Vector(maxs[0], maxs[1], mins[2]));
lines.emplace_back(Vector(maxs[0], maxs[1], maxs[2]));
// TODO: We don't actually have to add all as some are always going to overlap with the
// previous lines...
// Recurse on the left
float new_maxs[3] = {maxs[0], maxs[1], maxs[2]}; // Copy initially
new_maxs[axis] = node->point->pos[axis];
get_lines_recursive(lines, node->left, mins, new_maxs);
// Recurse on the right
float new_mins[3] = {mins[0], mins[1], mins[2]}; // Copy initially
new_mins[axis] = node->point->pos[axis];
get_lines_recursive(lines, node->right, new_mins, maxs);
}
};