Compare commits

..

No commits in common. "1649af99434d0088ce71e39259cb4afd987ca4b1" and "27dcc00e680a0019931a5e113714d43752dbb462" have entirely different histories.

5 changed files with 16 additions and 37 deletions

View File

@ -13,26 +13,22 @@ struct ObjMesh : public Mesh {
Settings() = default; Settings() = default;
Settings(float minDistanceForRender, float maxDistanceForRender, float diffuse, Settings(float minDistanceForRender, float maxDistanceForRender, float diffuse,
float specular, bool colliding) float specular)
: minDistanceForRender(minDistanceForRender), : minDistanceForRender(minDistanceForRender),
maxDistanceForRender(maxDistanceForRender), colliding(colliding) {} maxDistanceForRender(maxDistanceForRender) {}
float minDistanceForRender = 0.0; float minDistanceForRender = 0.0;
float maxDistanceForRender = 1000.0; float maxDistanceForRender = 1000.0;
bool colliding = true;
}; };
explicit ObjMesh(const std::string &path, const Settings &settings) explicit ObjMesh(const std::string &path, const Settings &settings)
: Mesh(getVerticesFromFile(path), getIndicesFromFile(path)), : Mesh(getVerticesFromFile(path), getIndicesFromFile(path)),
minDistance(settings.minDistanceForRender), maxDistance(settings.maxDistanceForRender), minDistance(settings.minDistanceForRender), maxDistance(settings.maxDistanceForRender) {}
colliding(settings.colliding) {}
float minDistance; float minDistance;
float maxDistance; float maxDistance;
bool colliding;
private: private:
static std::vector<float> getVerticesFromFile(const std::string &path) { static std::vector<float> getVerticesFromFile(const std::string &path) {
objl::Loader loader; objl::Loader loader;

View File

@ -23,16 +23,12 @@ class CollisionSystem : public EntitySystem {
// ObjMesh // ObjMesh
myWorld->each<ObjMesh, Transform>( myWorld->each<ObjMesh, Transform>(
[&](Entity *ent, ComponentHandle<ObjMesh> mesh, ComponentHandle<Transform> transform) { [&](Entity *ent, ComponentHandle<ObjMesh> mesh, ComponentHandle<Transform> transform) {
// If this mesh shouldn't collide, skip it
if (!mesh->colliding) { return; }
std::vector<unsigned int> indices = mesh->indices; std::vector<unsigned int> indices = mesh->indices;
std::vector<float> vertices = mesh->vertices; std::vector<float> vertices = mesh->vertices;
std::map<Vector, Point *> triangle_map; std::map<Vector, Point *> triangle_map;
// We iterate over the index array and add the resulting triangles to a hash map of // TODO: Iterate over vertices, add triangles by also iterating over indices
// vertices. That way, each vertex holds a list of all triangles it is involved in.
for (int i = 0; i < mesh->vertex_count; i += 3) { for (int i = 0; i < mesh->vertex_count; i += 3) {
// Build vertices from this triangle // Build vertices from this triangle
float v0p0 = vertices[indices[i + 0] * 14 + 0]; float v0p0 = vertices[indices[i + 0] * 14 + 0];
@ -94,7 +90,9 @@ class CollisionSystem : public EntitySystem {
// TODO // TODO
}); });
std::cout << "Start building kdtree with " << points.size() << " points" << std::endl;
kdtree = new KDTree(points); kdtree = new KDTree(points);
std::cout << "Done" << std::endl;
} }
void tick(World *pWorld, float deltaTime) override { void tick(World *pWorld, float deltaTime) override {

View File

@ -22,7 +22,6 @@ struct Vector {
return Vector(c[0] - other.c[0], c[1] - other.c[1], c[2] - other.c[2]); return Vector(c[0] - other.c[0], c[1] - other.c[1], c[2] - other.c[2]);
} }
// Arbitrary but functional definition of '<', primarily for use in an std::map.
bool operator<(const Vector &other) const { bool operator<(const Vector &other) const {
if ((c[2] < other.c[2])) { return true; } if ((c[2] < other.c[2])) { return true; }
if ((c[2] == other.c[2]) && (c[1] < other.c[1])) { return true; } if ((c[2] == other.c[2]) && (c[1] < other.c[1])) { return true; }
@ -31,7 +30,6 @@ struct Vector {
return false; return false;
} }
// Component-wise multiplication with a scalar
Vector operator*(float scalar) const { Vector operator*(float scalar) const {
return Vector(c[0] * scalar, c[1] * scalar, c[2] * scalar); return Vector(c[0] * scalar, c[1] * scalar, c[2] * scalar);
} }

View File

@ -1,5 +1,3 @@
#pragma once
#include "geometry.h" #include "geometry.h"
#include <algorithm> #include <algorithm>
#include <chrono> #include <chrono>
@ -11,7 +9,7 @@
class KDTree { class KDTree {
public: public:
KDTree(std::vector<Point *> points) { KDTree(std::vector<Point *> points) {
std::cout << "Building tree with " << points.size() << " points took "; std::cout << "Starting to build tree with " << points.size() << " points took ";
auto start = std::chrono::high_resolution_clock::now(); auto start = std::chrono::high_resolution_clock::now();
root = build(points, 0); root = build(points, 0);
auto end = std::chrono::high_resolution_clock::now(); auto end = std::chrono::high_resolution_clock::now();
@ -111,17 +109,13 @@ class KDTree {
void intersect_ray_recurse(const Triangle *&nearest_triangle, Vector &result, Ray ray, void intersect_ray_recurse(const Triangle *&nearest_triangle, Vector &result, Ray ray,
Node *node, int depth, float &nearest) { Node *node, int depth, float &nearest) {
// Exit condition: This node was iterated towards, but does not exist // Exit condition: There was no collision
if (node == nullptr) { return; } if (node == nullptr) { return; }
// Check for a collision here // Check for a collision here
// Iterate over all Triangles which this Point is involved in
for (const Triangle *triangle : node->point->triangles) { for (const Triangle *triangle : node->point->triangles) {
Vector current_result(0, 0, 0); Vector current_result(0, 0, 0);
float current_distance; float current_distance;
// If we have a collision, and it is closer to the ray origin than the closest previous
// collision, remember it
if (ray.intersects_triangle(triangle, current_result, current_distance)) { if (ray.intersects_triangle(triangle, current_result, current_distance)) {
if (current_distance < nearest) { if (current_distance < nearest) {
nearest = current_distance; nearest = current_distance;
@ -131,16 +125,14 @@ class KDTree {
} }
} }
// Is the ray origin within the left or right child node bounding box? // Is the left or right child node closer to this point?
Node *near = Node *near =
ray.origin[node->axis] > node->point->pos[node->axis] ? node->right : node->left; ray.origin[node->axis] > node->point->pos[node->axis] ? node->right : node->left;
Node *far = near == node->right ? node->left : node->right; Node *far = near == node->right ? node->left : node->right;
if (ray.direction[node->axis] == 0.0) { if (ray.direction[node->axis] == 0.0) {
// The ray is parallel to the splitting axis, so we only need to check within this box.
intersect_ray_recurse(nearest_triangle, result, ray, near, depth + 1, nearest); intersect_ray_recurse(nearest_triangle, result, ray, near, depth + 1, nearest);
} else { } else {
// Calculate the distance from the ray origin to the splitting axis
float t = float t =
(node->point->pos[node->axis] - ray.origin[node->axis]) / ray.direction[node->axis]; (node->point->pos[node->axis] - ray.origin[node->axis]) / ray.direction[node->axis];

View File

@ -94,11 +94,7 @@ int main(int argc, char **argv) {
// Create collision indicator // Create collision indicator
Entity *collision_point = world->create(); Entity *collision_point = world->create();
collision_point->assign<Transform>(); collision_point->assign<Transform>();
collision_point->assign<ObjMesh>(ObjMesh("Resources/sphere.obj", ObjMesh::Settings()));
ObjMesh::Settings cp_obj_settings = ObjMesh::Settings();
cp_obj_settings.colliding = false;
collision_point->assign<ObjMesh>(ObjMesh("Resources/sphere.obj", cp_obj_settings));
collision_point->assign<Texture>("Resources/red.png", Texture::Settings(true), false); collision_point->assign<Texture>("Resources/red.png", Texture::Settings(true), false);
collision_point->assign<Material>(0.1, 0.9); collision_point->assign<Material>(0.1, 0.9);
@ -132,8 +128,8 @@ int main(int argc, char **argv) {
Entity *monkey = world->create(); Entity *monkey = world->create();
monkey->assign<Transform>(); monkey->assign<Transform>();
monkey->assign<LODObjMesh>(std::vector<ObjMesh>{ monkey->assign<LODObjMesh>(std::vector<ObjMesh>{
ObjMesh("Resources/Monkey.obj", ObjMesh::Settings(0.0, 8.0, 0.4, 0.6, false)), ObjMesh("Resources/Monkey.obj", ObjMesh::Settings(0.0, 8.0, 0.4, 0.6)),
ObjMesh("Resources/MonkeySimple.obj", ObjMesh::Settings(8.0, 100.0, 0.4, 0.6, false))}); ObjMesh("Resources/MonkeySimple.obj", ObjMesh::Settings(8.0, 100.0, 0.4, 0.6))});
monkey->assign<Texture>("Resources/Marble010_2K_Color.jpg", Texture::Settings(true), false); monkey->assign<Texture>("Resources/Marble010_2K_Color.jpg", Texture::Settings(true), false);
monkey->get<Texture>()->addNormalmap("Resources/Marble010_2K_Normal.jpg", monkey->get<Texture>()->addNormalmap("Resources/Marble010_2K_Normal.jpg",
Texture::Settings(true)); Texture::Settings(true));
@ -208,11 +204,11 @@ int main(int argc, char **argv) {
Entity *sun = world->create(); Entity *sun = world->create();
sun->assign<DirectionalLight>(glm::normalize(glm::vec3(1.0, 1.0, 1.0))); sun->assign<DirectionalLight>(glm::normalize(glm::vec3(1.0, 1.0, 1.0)));
Entity *kdtree_vis = world->create();
// We're done loading geometry -> build the collision structure // We're done loading geometry -> build the collision structure
collision_system->build(); collision_system->build();
// Save the visualized kdtree as another entity
Entity *kdtree_vis = world->create();
kdtree_vis->assign<Lines>(collision_system->kdtree->get_lines()); kdtree_vis->assign<Lines>(collision_system->kdtree->get_lines());
Shader defaultShader("Shaders/default-vertex.vs", "Shaders/default-fragment.fs"); Shader defaultShader("Shaders/default-vertex.vs", "Shaders/default-fragment.fs");
@ -233,16 +229,15 @@ int main(int argc, char **argv) {
world->tick(delta); world->tick(delta);
renderSystem->render(world, defaultShader, shadowShader, debugShader, lineShader); renderSystem->render(world, defaultShader, shadowShader, debugShader, lineShader);
// Animations
/* ring->get<Transform>()->rotate(delta * 100.0, glm::vec3(0.0, 1.0, 0.0)); /* ring->get<Transform>()->rotate(delta * 100.0, glm::vec3(0.0, 1.0, 0.0));
sun->get<DirectionalLight>()->direction = glm::normalize(glm::vec3( sun->get<DirectionalLight>()->direction = glm::normalize(glm::vec3(
glm::rotate(glm::mat4(1), (float)elapsed_time * 0.5f, glm::vec3(0.0, 1.0, 0.0)) glm::rotate(glm::mat4(1), (float)elapsed_time * 0.5f, glm::vec3(0.0, 1.0, 0.0))
* glm::vec4(1.0, 1.0, 1.0, 0.0))); */ * glm::vec4(1.0, 1.0, 1.0, 0.0))); */
// Swap front and back buffers /* Swap front and back buffers */
glfwSwapBuffers(window); glfwSwapBuffers(window);
// Poll for and process events /* Poll for and process events */
glfwPollEvents(); glfwPollEvents();
} }