Add kdtree and foundation of CollisionSystem

This commit is contained in:
karl 2021-01-02 16:00:09 +01:00
parent 9c1417a8f9
commit 87b54a1b41
5 changed files with 342 additions and 2 deletions

View File

@ -11,7 +11,7 @@
struct Mesh {
explicit Mesh(const std::vector<float> &_vertices, const std::vector<unsigned int> &_indices)
: vertex_count(_indices.size()) {
: vertex_count(_indices.size()), vertices(_vertices), indices(_indices) {
// Copy the vertices into a local classic float array. Nothing was displayed without this,
// maybe
// due to weird hidden type incompatibility or out of scope issues?
@ -68,11 +68,14 @@ struct Mesh {
glDrawElements(GL_TRIANGLES, vertex_count, GL_UNSIGNED_INT, 0);
}
std::vector<float> vertices;
std::vector<unsigned int> indices;
unsigned int vertex_count;
private:
unsigned int EBO;
unsigned int VBO;
unsigned int VAO;
unsigned int vertex_count;
};
#endif // ECSGAME_MESH_H

View File

@ -0,0 +1,79 @@
#pragma once
#include "../../Util/kdtree.h"
#include "../Components/LODObjMesh.h"
#include "../Components/Mesh.h"
#include "../Components/ObjMesh.h"
#include "../Components/Transform.h"
#include "../ECS.h"
using namespace ECS;
class CollisionSystem : public EntitySystem {
public:
// Initialize the kdtree
void build() {
std::vector<Triangle *> triangles;
std::vector<Point *> points;
// ObjMesh
myWorld->each<ObjMesh, Transform>(
[&](Entity *ent, ComponentHandle<ObjMesh> mesh, ComponentHandle<Transform> transform) {
std::vector<unsigned int> indices = mesh->indices;
std::vector<float> vertices = mesh->vertices;
for (int i = 0; i < mesh->vertex_count; i += 3) {
float v0p0 = vertices[indices[i + 0] * 14 + 0];
float v0p1 = vertices[indices[i + 0] * 14 + 1];
float v0p2 = vertices[indices[i + 0] * 14 + 2];
float v1p0 = vertices[indices[i + 1] * 14 + 0];
float v1p1 = vertices[indices[i + 1] * 14 + 1];
float v1p2 = vertices[indices[i + 1] * 14 + 2];
float v2p0 = vertices[indices[i + 2] * 14 + 0];
float v2p1 = vertices[indices[i + 2] * 14 + 1];
float v2p2 = vertices[indices[i + 2] * 14 + 2];
glm::vec4 v1glm(v0p0, v0p1, v0p2, 1.0);
glm::vec4 v2glm(v1p0, v1p1, v1p2, 1.0);
glm::vec4 v3glm(v2p0, v2p1, v2p2, 1.0);
// Transform to World Position -- these are local coordinates with
// individual mesh origins
v1glm = transform->matrix * v1glm;
v2glm = transform->matrix * v2glm;
v3glm = transform->matrix * v3glm;
Vector v1(v1glm.x, v1glm.y, v1glm.z);
Vector v2(v2glm.x, v2glm.y, v2glm.z);
Vector v3(v3glm.x, v3glm.y, v3glm.z);
Triangle *triangle = new Triangle(v1, v2, v3);
triangles.emplace_back(triangle);
points.emplace_back(new Point(v1, triangle));
points.emplace_back(new Point(v2, triangle));
points.emplace_back(new Point(v3, triangle));
}
});
// LODObjMesh
myWorld->each<LODObjMesh, Transform>([&](Entity *ent, ComponentHandle<LODObjMesh> lodMesh,
ComponentHandle<Transform> transform) {
// TODO
});
std::cout << "Start building kdtree with " << points.size() << " points" << std::endl;
kdtree = new KDTree(points);
std::cout << "Done" << std::endl;
std::cout << kdtree->to_string() << std::endl;
}
void configure(World *pWorld) override { myWorld = pWorld; }
World *myWorld;
KDTree *kdtree;
};

112
Util/geometry.h Normal file
View File

@ -0,0 +1,112 @@
#include <vector>
// Forward declarations
struct Triangle;
struct Vector {
Vector(float coordinates[3]) : c(coordinates) {}
Vector(float x, float y, float z) : c(new float[3]{x, y, z}) {}
// Avoid having to write vector.c[index], instead allow vector[index]
float operator[](int i) const { return c[i]; }
float &operator[](int i) { return c[i]; }
Vector operator+(const Vector &other) const {
return Vector(c[0] + other.c[0], c[1] + other.c[1], c[2] + other.c[2]);
}
Vector operator-(const Vector &other) const {
return Vector(c[0] - other.c[0], c[1] - other.c[1], c[2] - other.c[2]);
}
Vector operator*(float scalar) const {
return Vector(c[0] * scalar, c[1] * scalar, c[2] * scalar);
}
Vector cross(const Vector &other) {
return Vector(c[1] * other[2] - c[2] - other[1], c[2] * other[0] - c[0] * other[2],
c[0] * other[1] - c[1] * other[0]);
}
float dot(const Vector &other) { return c[0] * other[0] + c[1] * other[1] + c[2] * other[2]; }
float *c;
};
struct Point {
Point(Vector pos, Triangle *triangle) : pos(pos), triangle(triangle) {}
Vector pos;
Triangle *triangle;
};
struct Triangle {
Triangle(Vector p1, Vector p2, Vector p3) : p1(p1), p2(p2), p3(p3) {}
std::vector<Point *> create_point_objects() {
return std::vector<Point *>{new Point(p1, this), new Point(p2, this), new Point(p3, this)};
}
Vector p1;
Vector p2;
Vector p3;
};
struct Node {
Node(int axis, Point *point, Node *left, Node *right)
: axis(axis), point(point), left(left), right(right) {}
int axis;
Point *point;
Node *left;
Node *right;
};
struct Ray {
Ray(Vector origin, Vector direction) : origin(origin), direction(direction) {}
Vector origin;
Vector direction;
bool intersects_triangle(Triangle *triangle) {
// Ray-triangle-intersection with the MöllerTrumbore algorithm
// https://en.wikipedia.org/wiki/M%C3%B6ller%E2%80%93Trumbore_intersection_algorithm
const float EPSILON = 0.0000001;
Vector p1 = triangle->p1;
Vector p2 = triangle->p2;
Vector p3 = triangle->p3;
Vector edge1 = p2 - p1;
Vector edge2 = p3 - p1;
Vector h = direction.cross(edge2);
float a = edge1.dot(h);
if (a > -EPSILON && a < EPSILON) return false; // This ray is parallel to this triangle.
float f = 1.0 / a;
Vector s = origin - p1;
float u = f * s.dot(h);
if (u < 0.0 || u > 1.0) return false;
Vector q = s.cross(edge1);
float v = f * direction.dot(q);
if (v < 0.0 || u + v > 1.0) return false;
// At this stage we can compute t to find out where the intersection point is on the
// line.
float t = f * edge2.dot(q);
if (t > EPSILON) {
return true;
} else {
// This means that there is a line intersection but not a ray intersection.
return false;
}
}
};

139
Util/kdtree.h Normal file
View File

@ -0,0 +1,139 @@
#include "geometry.h"
#include <algorithm>
#include <glm/glm.hpp>
#include <iostream>
#include <string>
#include <vector>
class KDTree {
public:
KDTree(std::vector<Point *> points) { root = build(points, 0); }
~KDTree() = default; // TODO: Delete all allocated Nodes
Triangle *intersect_ray(Ray ray) { return intersect_ray_recurse(ray, root, 1000.0); }
std::string to_string() {
std::string str = "";
to_string_recurse(str, root, 0);
return str;
}
private:
Node *root;
int MAX_DEPTH = 500;
// Returns a comparator lambda for assessing which of the two points has a
// greater coordinate in the given axis.
auto get_point_comparator(int axis) {
return [axis](Point *p1, Point *p2) {
return p1->pos[axis] < p2->pos[axis];
};
}
Node *build(std::vector<Point *> points, int depth) {
// Exit conditions
if (points.empty() || depth > MAX_DEPTH) { return nullptr; }
// Select axis by choosing the one with maximal extent
float max_extent = 0;
int axis = 0;
for (int it_axis = 0; it_axis < 3; it_axis++) {
// Get extent along this axis
auto comparator = get_point_comparator(it_axis);
Point *min = *std::min_element(points.begin(), points.end(), comparator);
Point *max = *std::max_element(points.begin(), points.end(), comparator);
float extent = max->pos[it_axis] - min->pos[it_axis];
// Is it greater than max_extent?
if (extent > max_extent) {
// If so, make this the splitting axis
max_extent = extent;
axis = it_axis;
}
}
// Choose the median as the pivot and sort the points into
// left-of-median and right-of-median using nth_element
int middle = points.size() / 2;
std::nth_element(points.begin(), points.begin() + middle, points.end(),
get_point_comparator(axis));
Point *median = points[middle];
// TODO: This copies. Can we split the vector into two without copying?
std::vector<Point *> left_of_median(points.begin(), points.begin() + middle);
std::vector<Point *> right_of_median(points.begin() + middle + 1, points.end());
// Create node, recursively call to construct subtree
return new Node(axis, median, build(left_of_median, depth + 1),
build(right_of_median, depth + 1));
}
Triangle *intersect_ray_recurse(Ray ray, Node *node, float max_distance) {
// Exit condition: There was no collision
if (node == nullptr) { return nullptr; }
// Is the left or right child node closer to this point?
Node *near =
ray.origin[node->axis] > node->point->pos[node->axis] ? node->right : node->left;
Node *far = near == node->right ? node->left : node->right;
std::cout << "Checking " << node->point->pos[0] << ", " << node->point->pos[1] << ", "
<< node->point->pos[2] << std::endl;
// Check for collisions in this order (stopping if an intersection is found):
// 1. In the nearer section
// 2. With the point in this current node
// 3. In the further section
// If the axes are not parallel, our max_distance decreases, since we've already covered
// some area. `t` represents the distance from this node to the splitting plane.
float t = ray.direction[node->axis] != 0.0
? (node->point->pos[node->axis] - ray.origin[node->axis]) /
ray.direction[node->axis]
: max_distance;
Triangle *near_result = intersect_ray_recurse(ray, near, t);
// If the nearer segment had a collision, we're done! We're only interested in the closest
// collision.
if (near_result != nullptr) { return near_result; }
// No collision in the nearer side, so check for a collision directly here
if (ray.intersects_triangle(node->point->triangle)) {
// We do have a collision here, so we're done and can return this point!
return node->point->triangle;
}
// No collision here either. Does it make sense to also check the far node?
// Only if the axes are not parallel and if that area is not behind us
if (ray.direction[node->axis] != 0.0 && t >= 0.0) {
// It does make sense to check the far node.
// For this, calculate a new ray origin and continue towards that direction, but with
// the new origin (we can leave behind what we already checked)
return intersect_ray_recurse(Ray(ray.origin + ray.direction * t, ray.direction), far,
max_distance - t);
}
// If nothing worked, return a nullptr
return nullptr;
}
void to_string_recurse(std::string &str, Node *node, int depth) {
if (node == nullptr) { return; }
Point *point = node->point;
str += std::string(depth * 2, ' ') + std::to_string(point->pos[0]) + ", " +
std::to_string(point->pos[1]) + ", " + std::to_string(point->pos[2]) +
" with axis " + std::to_string(node->axis) + "\n";
to_string_recurse(str, node->left, depth + 1);
to_string_recurse(str, node->right, depth + 1);
}
};

View File

@ -10,6 +10,7 @@
#include "ECS/ECS.h"
#include "ECS/Events/InputEvent.h"
#include "ECS/Events/MouseMoveEvent.h"
#include "ECS/Systems/CollisionSystem.h"
#include "ECS/Systems/GravitySystem.h"
#include "ECS/Systems/InteractivePathSystem.h"
#include "ECS/Systems/KeyboardMovementSystem.h"
@ -89,6 +90,9 @@ int main(int argc, char **argv) {
world->registerSystem(new SineAnimationSystem());
world->registerSystem(new InteractivePathSystem());
CollisionSystem *collision_system = new CollisionSystem();
world->registerSystem(collision_system);
RenderSystem *renderSystem = new RenderSystem();
world->registerSystem(renderSystem);
@ -192,6 +196,9 @@ int main(int argc, char **argv) {
Entity *sun = world->create();
sun->assign<DirectionalLight>(glm::normalize(glm::vec3(1.0, 1.0, 1.0)));
// We're done loading geometry -> build the collision structure
collision_system->build();
Shader defaultShader("Shaders/default-vertex.vs", "Shaders/default-fragment.fs");
Shader shadowShader("Shaders/shadow-vertex.vs", "Shaders/shadow-fragment.fs");
Shader debugShader("Shaders/debug-vertex.vs", "Shaders/debug-fragment.fs");