Rewrite intersect_ray_recurse

Like the function in the slides now, but I had to change a part because it's not working 100% otherwise... not very optimized now
This commit is contained in:
karl 2021-01-16 19:16:36 +01:00
parent 40dc7850a9
commit 59d9311cc8

View File

@ -1,5 +1,6 @@
#include "geometry.h"
#include <algorithm>
#include <chrono>
#include <glm/glm.hpp>
#include <iostream>
#include <string>
@ -7,12 +8,31 @@
class KDTree {
public:
KDTree(std::vector<Point *> points) { root = build(points, 0); }
KDTree(std::vector<Point *> points) {
std::cout << "Starting to build tree with " << points.size() << " points took ";
auto start = std::chrono::high_resolution_clock::now();
root = build(points, 0);
auto end = std::chrono::high_resolution_clock::now();
std::cout << std::chrono::duration_cast<std::chrono::microseconds>(end - start).count()
<< " microseconds" << std::endl;
}
~KDTree() = default; // TODO: Delete all allocated Nodes
const Triangle *intersect_ray(const Ray ray, Vector &result) {
return intersect_ray_recurse(result, ray, root, 1000.0, 0);
auto start = std::chrono::high_resolution_clock::now();
float nearest = 1000.0;
const Triangle *nearest_triangle = nullptr;
intersect_ray_recurse(nearest_triangle, result, ray, root, 1000.0, 0, nearest);
auto end = std::chrono::high_resolution_clock::now();
std::cout << "Intersection took "
<< std::chrono::duration_cast<std::chrono::microseconds>(end - start).count()
<< " microseconds" << std::endl;
return nearest_triangle;
}
std::string to_string() {
@ -87,43 +107,16 @@ class KDTree {
build(right_of_median, depth + 1));
}
const Triangle *intersect_ray_recurse(Vector &result, Ray ray, Node *node, float max_distance,
int depth) {
void intersect_ray_recurse(const Triangle *&nearest_triangle, Vector &result, Ray ray,
Node *node, float max_distance, int depth, float &nearest) {
// Exit condition: There was no collision
if (node == nullptr) { return nullptr; }
// Is the left or right child node closer to this point?
Node *near =
ray.origin[node->axis] > node->point->pos[node->axis] ? node->right : node->left;
Node *far = near == node->right ? node->left : node->right;
// Check for collisions in this order (stopping if an intersection is found):
// 1. In the nearer section
// 2. With the point in this current node
// 3. In the further section
// If the axes are not parallel, our max_distance decreases, since we've already covered
// some area. `t` represents the distance from this node to the splitting plane.
float t = ray.direction[node->axis] != 0.0
? (node->point->pos[node->axis] - ray.origin[node->axis]) /
ray.direction[node->axis]
: max_distance;
const Triangle *near_result = intersect_ray_recurse(result, ray, near, t, depth + 1);
// If the nearer segment had a collision, we're done! We're only interested in the closest
// collision.
if (near_result != nullptr) { return near_result; }
// No collision in the nearer side, so check for a collision directly here
float nearest = 100000; // FIXME
const Triangle *nearest_triangle = nullptr;
if (node == nullptr) { return; }
// Check for a collision here
for (const Triangle *triangle : node->point->triangles) {
Vector current_result(0, 0, 0);
float current_distance;
if (ray.intersects_triangle(triangle, current_result, current_distance)) {
std::cout << "tested with " << current_distance << std::endl;
if (current_distance < nearest) {
nearest = current_distance;
nearest_triangle = triangle;
@ -132,20 +125,31 @@ class KDTree {
}
}
if (nearest_triangle) { return nearest_triangle; }
// Is the left or right child node closer to this point?
Node *near =
ray.origin[node->axis] > node->point->pos[node->axis] ? node->right : node->left;
Node *far = near == node->right ? node->left : node->right;
// No collision here either. Does it make sense to also check the far node?
// Only if the axes are not parallel and if that area is not behind us
if (ray.direction[node->axis] != 0.0) { // FIXME: should include && t >= 0.0
// It does make sense to check the far node.
// For this, calculate a new ray origin and continue towards that direction, but with
// the new origin (we can leave behind what we already checked)
return intersect_ray_recurse(result, Ray(ray.origin + ray.direction * t, ray.direction),
far, max_distance - t, depth + 1);
if (ray.direction[node->axis] == 0.0) {
intersect_ray_recurse(nearest_triangle, result, ray, near, max_distance, depth + 1,
nearest);
} else {
/* float t =
(node->point->pos[node->axis] - ray.origin[node->axis]) /
ray.direction[node->axis];
if (t >= 0.0 && t < max_distance) {
intersect_ray_recurse(nearest_triangle, result, ray, near, t, depth + 1,
nearest); intersect_ray_recurse(nearest_triangle, result, Ray(ray.origin +
ray.direction * t, ray.direction), far, max_distance - t, depth + 1, nearest); } else
{ intersect_ray_recurse(nearest_triangle, result, ray, near, max_distance, depth + 1,
nearest);
} */
intersect_ray_recurse(nearest_triangle, result, ray, near, max_distance, depth + 1,
nearest);
intersect_ray_recurse(nearest_triangle, result, ray, far, max_distance, depth + 1,
nearest);
}
// If nothing worked, return a nullptr
return nullptr;
}
void to_string_recurse(std::string &str, Node *node, int depth) {