#ifndef QUICKHULL_H #define QUICKHULL_H #include #include #include #include #include "Display.h" #include "Triangle.h" #include "Utility.h" // For IsPointInRectangle class Quickhull { public: static void get_hull(std::list &input, std::list &output, bool akl) { // Get leftmost and rightmost point Point leftmost(INFINITY, 0.0), rightmost(-INFINITY, 0.0); if (akl) { // Also get highest and lowest point Point lowest(0.0, -INFINITY), highest(0.0, INFINITY); for (const Point &point : input) { if (point.x() < leftmost.x()) { leftmost = point; } else if (point.x() > rightmost.x()) { rightmost = point; } if (point.y() < highest.y()) { highest = point; } else if (point.y() > lowest.y()) { lowest = point; } } Triangle t1(highest, rightmost, lowest); Triangle t2(lowest, leftmost, highest); // Remove all points in this rectangle input.remove_if([highest, leftmost, lowest, rightmost](const Point &point) { return IsPointInRectangle(point, highest, leftmost, lowest, rightmost); }); output.emplace_back(leftmost); output.emplace_back(rightmost); output.emplace_back(highest); output.emplace_back(lowest); } else { for (const Point &point : input) { if (point.x() < leftmost.x()) { leftmost = point; } else if (point.x() > rightmost.x()) { rightmost = point; } } // Add them to the output output.emplace_back(leftmost); output.emplace_back(rightmost); // Remove them from the input (as well as duplicates) input.remove(leftmost); input.remove(rightmost); } // Create a line from leftmost to rightmost Line line = Line(leftmost, rightmost); // Sort points between left and right of that line std::list points_left, points_right; for (const Point &point : input) { if (line.is_point_right(point)) { points_right.emplace_back(point); } else { points_left.emplace_back(point); } } // Call get_hull_with_line with the left points, as well as with the right points, and the line get_hull_with_line(points_left, output, line); get_hull_with_line(points_right, output, line); } static void show (std::list &points, std::list& hull) { // showing points in window after calculation // create the window sf::RenderWindow window(sf::VideoMode(WIDTH, HEIGHT), "ALGO Prog2: Quickhull - performance"); sf::CircleShape normal_p(2); normal_p.setFillColor(sf::Color(250, 250, 250)); sf::CircleShape hull_p(2); hull_p.setFillColor(sf::Color(250, 100, 50)); // run the program as long as the window is open while (window.isOpen()) { // check all the window's events that were triggered since the last iteration of the loop sf::Event event; while (window.pollEvent(event)) { // "close requested" event: we close the window if (event.type == sf::Event::Closed) window.close(); } // clear the window with black color window.clear(sf::Color::Black); // Draw all points for (const Point& point : points) { normal_p.setPosition(point.x(), point.y()); window.draw(normal_p); } // Draw hull points for (const Point& point : hull) { hull_p.setPosition(point.x(), point.y()); window.draw(hull_p); } // end the current frame window.display(); } } private: static void get_hull_with_line(std::list &input, std::list &output, const Line &line) { // If the input vector is empty, we're done if (input.empty()) return; // Find the point which is furthest away from the line, add it to the output Point furthest_point; float furthest_distance = -1.0; for (const Point &point : input) { float this_distance = line.distance_squared_to(point); if (this_distance > furthest_distance) { furthest_distance = this_distance; furthest_point = point; } } // This seems unnecessarily complicated, but it actually yielded the best results, // especially when the rectangle edge case is taken into account. for (const Point &point : input) { float this_distance = line.distance_squared_to(point); if (this_distance == furthest_distance) { output.emplace_back(point); } } // Remove the previously checked points from the input -- we can't do that in // the previous loop because we can't delete from the list we're iterating over input.remove_if([furthest_distance, line](Point point) { return furthest_distance == line.distance_squared_to(point); }); output.emplace_back(furthest_point); // Build a triangle with these 3 points // We need to differentiate based on which side the furthest point is on // in order to keep the meaning of left/right consistent. Line new_line1, new_line2; if (line.is_point_right(furthest_point)) { new_line1 = Line(line.to(), furthest_point); new_line2 = Line(furthest_point, line.from()); } else { new_line1 = Line(line.from(), furthest_point); new_line2 = Line(furthest_point, line.to()); } // We don't need to remove points inside the triangle created by those lines. // That happens implicitly since they are not handled further due to the // following step, which assigns each line its corresponding points to handle: // Get points right of new_line1 and 2 std::list left_of_line1, left_of_line2; for (const Point& point : input) { if (!new_line1.is_point_right(point)) { left_of_line1.emplace_back(point); } // TODO: Are there any possible edge cases where this 'else if' won't work, // and we need an 'if' instead? else if (!new_line2.is_point_right(point)) { left_of_line2.emplace_back(point); } } // Recursively call get_hull_with_line for each side of the triangle get_hull_with_line(left_of_line1, output, new_line1); get_hull_with_line(left_of_line2, output, new_line2); } }; #endif // QUICKHULL_H