152 lines
4.5 KiB
C++
152 lines
4.5 KiB
C++
#pragma once
|
|
|
|
// https://en.wikipedia.org/wiki/Median_of_medians
|
|
// https://oneraynyday.github.io/algorithms/2016/06/17/Median-Of-Medians/
|
|
// https://www.geeksforgeeks.org/kth-smallestlargest-element-unsorted-array-set-3-worst-case-linear-time/
|
|
|
|
int findMedian(std::vector<size_t> values) {
|
|
size_t median;
|
|
size_t size = values.size();
|
|
median = values[(size / 2)];
|
|
return median;
|
|
}
|
|
|
|
int findMedianOfMedians(std::vector<std::vector<size_t> > values) {
|
|
std::vector<size_t> medians;
|
|
for (size_t i = 0; i < values.size(); i++) {
|
|
size_t m = findMedian(values[i]);
|
|
medians.push_back(m);
|
|
}
|
|
return findMedian(medians);
|
|
}
|
|
|
|
size_t getMedianOfMedians(const std::vector<size_t> values, size_t k) {
|
|
// Divide the list into n/5 lists of 5 elements each
|
|
std::vector<std::vector<size_t> > vec2D;
|
|
size_t count = 0;
|
|
while (count != values.size()) {
|
|
size_t countRow = 0;
|
|
std::vector<size_t> row;
|
|
while ((countRow < 5) && (count < values.size())) {
|
|
row.push_back(values[count]);
|
|
count++;
|
|
countRow++;
|
|
}
|
|
vec2D.push_back(row);
|
|
}
|
|
|
|
// Calculating a new pivot for making splits
|
|
size_t m = findMedianOfMedians(vec2D);
|
|
|
|
// Partition the list into unique elements larger than 'm' (call this sublist L1) and those smaller them 'm' (call this sublist L2)
|
|
std::vector<size_t> L1, L2;
|
|
|
|
for (size_t i = 0; i < vec2D.size(); i++) {
|
|
for (size_t j = 0; j < vec2D[i].size(); j++) {
|
|
if (vec2D[i][j] > m) {
|
|
L1.push_back(vec2D[i][j]);
|
|
}
|
|
else if (vec2D[i][j] < m) {
|
|
L2.push_back(vec2D[i][j]);
|
|
}
|
|
}
|
|
}
|
|
|
|
if (k <= L1.size()) {
|
|
return getMedianOfMedians(L1, k);
|
|
}
|
|
else if (k > (L1.size() + 1)) {
|
|
return getMedianOfMedians(L2, k - ((int)L1.size()) - 1);
|
|
}
|
|
return m;
|
|
}
|
|
|
|
// custom swap function
|
|
void swap(size_t* a, size_t* b)
|
|
{
|
|
size_t temp = *a;
|
|
*a = *b;
|
|
*b = temp;
|
|
}
|
|
|
|
// A simple function to find median of arr[]. This is called
|
|
// only for an array of size 5 in this program.
|
|
int findMedian(size_t arr[], int n)
|
|
{
|
|
std::sort(arr, arr + n); // Sort the array
|
|
return arr[n / 2]; // Return middle element
|
|
}
|
|
|
|
// It searches for x in arr[l..r], and partitions the array
|
|
// around x.
|
|
int partition(size_t arr[], int l, int r, int x)
|
|
{
|
|
// Search for x in arr[l..r] and move it to end
|
|
int i;
|
|
for (i = l; i < r; i++)
|
|
if (arr[i] == x)
|
|
break;
|
|
swap(&arr[i], &arr[r]);
|
|
|
|
// Standard partition algorithm
|
|
i = l;
|
|
for (int j = l; j <= r - 1; j++)
|
|
{
|
|
if (arr[j] <= x)
|
|
{
|
|
swap(&arr[i], &arr[j]);
|
|
i++;
|
|
}
|
|
}
|
|
swap(&arr[i], &arr[r]);
|
|
return i;
|
|
}
|
|
|
|
// Returns k'th smallest element in arr[l..r] in worst case
|
|
// linear time. ASSUMPTION: ALL ELEMENTS IN ARR[] ARE DISTINCT
|
|
//int getMedianOfMedians(int arr[], int l, int r, int k)
|
|
size_t getMedianOfMedians(size_t* arr, int l, int r, int k)
|
|
{
|
|
// If k is smaller than number of elements in array
|
|
if (k > 0 && k <= r - l + 1)
|
|
{
|
|
int n = r - l + 1; // Number of elements in arr[l..r]
|
|
|
|
// Divide arr[] in groups of size 5, calculate median
|
|
// of every group and store it in median[] array.
|
|
// There will be floor((n + 4) / 5) groups;
|
|
//int median[(n + 4) / 5]; // non VS compliant!
|
|
size_t* median = new size_t[(n + 4) / 5];
|
|
int i = 0;
|
|
for (i = 0; i < n / 5; i++)
|
|
median[i] = findMedian(arr + l + i * 5, 5);
|
|
if (i * 5 < n) //For last group with less than 5 elements
|
|
{
|
|
median[i] = findMedian(arr + l + i * 5, n % 5);
|
|
i++;
|
|
}
|
|
|
|
// Find median of all medians using recursive call.
|
|
// If median[] has only one element, then no need
|
|
// of recursive call
|
|
int medOfMed = (i == 1) ? median[i - 1] :
|
|
getMedianOfMedians(median, 0, i - 1, i / 2);
|
|
|
|
// Partition the array around a random element and
|
|
// get position of pivot element in sorted array
|
|
int pos = partition(arr, l, r, medOfMed);
|
|
|
|
// If position is same as k
|
|
if (pos - l == k - 1)
|
|
return arr[pos];
|
|
if (pos - l > k - 1) // If position is more, recur for left
|
|
return getMedianOfMedians(arr, l, pos - 1, k);
|
|
|
|
// Else recur for right subarray
|
|
return getMedianOfMedians(arr, pos + 1, r, k - pos + l - 1);
|
|
}
|
|
|
|
// If k is more than number of elements in array
|
|
return SIZE_MAX;
|
|
}
|