median-comparison/RandomizedSelect.h

115 lines
3.1 KiB
C++

#pragma once
#include <vector>
// Lomuto Partitioning
int randomizedPartition(std::vector<size_t>& values, int p, int r)
{
int i = p + rand() % (r - p); // generate a random number in {p, ..., r}
swap(&values[i], &values[r]);
int pivotValue = values[r];
i = p - 1;
for (int j = p; j < r; j++)
{
if (values[j] <= pivotValue)
{
i++;
swap(&values[i], &values[j]);
}
}
swap(&values[i + 1], &values[r]);
return (i + 1);
}
// TODO: Hoare Partitioning
// https://www.geeksforgeeks.org/quicksort-using-random-pivoting/
int randomizedPartition2(std::vector<size_t>& values, int low, int high)
{
int i = low + rand() % (high - low); // generate a random number in {p, ..., r}
std::swap(values[i], values[low]);
int pivot = values[low];
i = low - 1;
int j = high + 1;
while (true) {
// Find leftmost element greater than
// or equal to pivot
do {
i++;
} while (values[i] < pivot);
// Find rightmost element smaller than
// or equal to pivot
do {
j--;
} while (values[j] > pivot);
// If two pointers met
if (i >= j)
return j;
std::swap(values[i], values[j]);
}
}
int randomizedPartition3(std::vector<size_t>& values, int l, int r)
{
int n = r - l + 1;
int pivot = rand() % n;
std::swap(values[l + pivot], values[r]);
int x = values[r], i = l;
for (int j = l; j <= r - 1; j++)
{
if (values[j] <= x)
{
std::swap(values[i], values[j]);
i++;
}
}
std::swap(values[i], values[r]);
return i;
}
int randomizedSelect(std::vector<size_t> values, int p, int r, int i)
{
/*
// Partition the array around a random element and
// get position of pivot element in sorted array
int pos = randomizedPartition(values, p, r);
// If position is same as k
if (pos - p == i - 1)
return values[pos];
if (pos - p > i - 1) // If position is more, recur for left subarray
return randomizedSelect(values, p, pos - 1, i);
// Else recur for right subarray
return randomizedSelect(values, pos + 1, r, i - pos + p - 1);
*/
// Pseudo code Alux Nimmervoll, Algo vo3
// Anmerkung: code funktioniert!
/*
RANDOMIZED-SELECT(A,p,r,i)
if (p==r) then return A[p]
q=RANDOMIZED_PARTITION(A,p,r) //Pivot Element A[q]
k=q-p+1 //Anzahl Elemente A[p..q]
if (i==k) then return A[q] //Pivot ist das gesuchte
elseif (i<k)
then return RANDOMIZED-SELECT(A,p,q-1,i)
else return RANDOMIZED-SELECT(A,q+1,r,i-k)
*/
if (p == r) return values[p];
//int q = randomizedPartition(values, p, r); // Pivot Element A[q]
//int q = randomizedPartition2(values, p, r); // Pivot Element A[q]
int q = randomizedPartition3(values, p, r); // Pivot Element A[q]
int k = q - p + 1; // Anzahl Elemente A[p..q]
if (i == k) return values[q]; // Pivot ist das gesuchte
else if (i < k)
return randomizedSelect(values, p, q - 1, i);
else return randomizedSelect(values, q + 1, r, i - k);
}