median-comparison/MedianOfMedians.h

153 lines
4.4 KiB
C++

#pragma once
// https://en.wikipedia.org/wiki/Median_of_medians
// https://oneraynyday.github.io/algorithms/2016/06/17/Median-Of-Medians/
// https://www.geeksforgeeks.org/kth-smallestlargest-element-unsorted-array-set-3-worst-case-linear-time/
int findMedian(std::vector<size_t> values)
{
size_t median;
size_t size = values.size();
median = values[(size / 2)];
return median;
}
int findMedianOfMedians(std::vector<std::vector<size_t> > values)
{
std::vector<size_t> medians;
for (size_t i = 0; i < values.size(); i++) {
size_t m = findMedian(values[i]);
medians.push_back(m);
}
return findMedian(medians);
}
size_t getMedianOfMedians(const std::vector<size_t> values, size_t k)
{
// Divide the list into n/5 lists of 5 elements each
std::vector<std::vector<size_t> > vec2D;
size_t count = 0;
while (count != values.size()) {
size_t countRow = 0;
std::vector<size_t> row;
while ((countRow < 5) && (count < values.size()))
{
row.push_back(values[count]);
count++;
countRow++;
}
vec2D.push_back(row);
}
// Calculating a new pivot for making splits
size_t m = findMedianOfMedians(vec2D);
// Partition the list into unique elements larger than 'm' (call this sublist L1) and those smaller them 'm' (call this sublist L2)
std::vector<size_t> L1, L2;
for (size_t i = 0; i < vec2D.size(); i++)
{
for (size_t j = 0; j < vec2D[i].size(); j++)
{
if (vec2D[i][j] > m)
{
L1.push_back(vec2D[i][j]);
}
else if (vec2D[i][j] < m)
{
L2.push_back(vec2D[i][j]);
}
}
}
if (k <= L1.size())
{
return getMedianOfMedians(L1, k);
}
else if (k > (L1.size() + 1))
{
return getMedianOfMedians(L2, k - ((int)L1.size()) - 1);
}
return m;
}
// A simple function to find median of arr[].
// This is called only for an array of size 5 in this program.
int findMedian(size_t arr[], int n)
{
std::sort(arr, arr + n); // Sort the array
return arr[n / 2]; // Return middle element
}
// searches for x in arr[l..r], and partitions the array around x
int partition(size_t arr[], int l, int r, int x)
{
// Search for x in arr[l..r] and move it to end
int i;
for (i = l; i < r; i++)
if (arr[i] == x)
break;
swap(&arr[i], &arr[r]);
// Standard partition algorithm
i = l;
for (int j = l; j < r; j++)
{
if (arr[j] <= x)
{
i++;
swap(&arr[i], &arr[j]);
}
}
swap(&arr[i], &arr[r]);
return i;
}
// Returns k'th smallest element in arr[l..r] in worst case
// linear time. ASSUMPTION: ALL ELEMENTS IN ARR[] ARE DISTINCT
//int getMedianOfMedians(int arr[], int l, int r, int k)
size_t getMedianOfMedians(size_t* arr, int l, int r, int k)
{
// If k is smaller than number of elements in array
if (k > 0 && k <= r - l + 1)
{
int n = r - l + 1; // Number of elements in arr[l..r]
// Divide arr[] in groups of size 5, calculate median
// of every group and store it in median[] array.
// There will be floor((n + 4) / 5) groups;
//int median[(n + 4) / 5]; // non VS compliant!
size_t* median = new size_t[(n + 4) / 5];
int i = 0;
for (i = 0; i < n / 5; i++)
median[i] = findMedian(arr + l + i * 5, 5);
if (i * 5 < n) //For last group with less than 5 elements
{
median[i] = findMedian(arr + l + i * 5, n % 5);
i++;
}
// Find median of all medians using recursive call.
// If median[] has only one element, then no need
// of recursive call
int medOfMed = (i == 1) ? median[i - 1] :
getMedianOfMedians(median, 0, i - 1, i / 2);
// Partition the array around a random element and
// get position of pivot element in sorted array
int pos = partition(arr, l, r, medOfMed);
// If position is same as k
if (pos - l == k - 1)
return arr[pos];
if (pos - l > k - 1) // If position is more, recur for left
return getMedianOfMedians(arr, l, pos - 1, k);
// Else recur for right subarray
return getMedianOfMedians(arr, pos + 1, r, k - pos + l - 1);
}
// If k is more than number of elements in array
return SIZE_MAX;
}