fixed coding guidelines and added a lot of testcode

This commit is contained in:
incredibleLeitman 2020-10-14 00:26:32 +02:00
parent fec5e8a6e7
commit 04a25454ac
3 changed files with 131 additions and 56 deletions

View File

@ -4,14 +4,16 @@
// https://oneraynyday.github.io/algorithms/2016/06/17/Median-Of-Medians/ // https://oneraynyday.github.io/algorithms/2016/06/17/Median-Of-Medians/
// https://www.geeksforgeeks.org/kth-smallestlargest-element-unsorted-array-set-3-worst-case-linear-time/ // https://www.geeksforgeeks.org/kth-smallestlargest-element-unsorted-array-set-3-worst-case-linear-time/
int findMedian(std::vector<size_t> values) { int findMedian(std::vector<size_t> values)
{
size_t median; size_t median;
size_t size = values.size(); size_t size = values.size();
median = values[(size / 2)]; median = values[(size / 2)];
return median; return median;
} }
int findMedianOfMedians(std::vector<std::vector<size_t> > values) { int findMedianOfMedians(std::vector<std::vector<size_t> > values)
{
std::vector<size_t> medians; std::vector<size_t> medians;
for (size_t i = 0; i < values.size(); i++) { for (size_t i = 0; i < values.size(); i++) {
size_t m = findMedian(values[i]); size_t m = findMedian(values[i]);
@ -20,14 +22,16 @@ int findMedianOfMedians(std::vector<std::vector<size_t> > values) {
return findMedian(medians); return findMedian(medians);
} }
size_t getMedianOfMedians(const std::vector<size_t> values, size_t k) { size_t getMedianOfMedians(const std::vector<size_t> values, size_t k)
{
// Divide the list into n/5 lists of 5 elements each // Divide the list into n/5 lists of 5 elements each
std::vector<std::vector<size_t> > vec2D; std::vector<std::vector<size_t> > vec2D;
size_t count = 0; size_t count = 0;
while (count != values.size()) { while (count != values.size()) {
size_t countRow = 0; size_t countRow = 0;
std::vector<size_t> row; std::vector<size_t> row;
while ((countRow < 5) && (count < values.size())) { while ((countRow < 5) && (count < values.size()))
{
row.push_back(values[count]); row.push_back(values[count]);
count++; count++;
countRow++; countRow++;
@ -41,44 +45,41 @@ size_t getMedianOfMedians(const std::vector<size_t> values, size_t k) {
// Partition the list into unique elements larger than 'm' (call this sublist L1) and those smaller them 'm' (call this sublist L2) // Partition the list into unique elements larger than 'm' (call this sublist L1) and those smaller them 'm' (call this sublist L2)
std::vector<size_t> L1, L2; std::vector<size_t> L1, L2;
for (size_t i = 0; i < vec2D.size(); i++) { for (size_t i = 0; i < vec2D.size(); i++)
for (size_t j = 0; j < vec2D[i].size(); j++) { {
if (vec2D[i][j] > m) { for (size_t j = 0; j < vec2D[i].size(); j++)
{
if (vec2D[i][j] > m)
{
L1.push_back(vec2D[i][j]); L1.push_back(vec2D[i][j]);
} }
else if (vec2D[i][j] < m) { else if (vec2D[i][j] < m)
{
L2.push_back(vec2D[i][j]); L2.push_back(vec2D[i][j]);
} }
} }
} }
if (k <= L1.size()) { if (k <= L1.size())
{
return getMedianOfMedians(L1, k); return getMedianOfMedians(L1, k);
} }
else if (k > (L1.size() + 1)) { else if (k > (L1.size() + 1))
{
return getMedianOfMedians(L2, k - ((int)L1.size()) - 1); return getMedianOfMedians(L2, k - ((int)L1.size()) - 1);
} }
return m; return m;
} }
// custom swap function // A simple function to find median of arr[].
void swap(size_t* a, size_t* b) // This is called only for an array of size 5 in this program.
{
size_t temp = *a;
*a = *b;
*b = temp;
}
// A simple function to find median of arr[]. This is called
// only for an array of size 5 in this program.
int findMedian(size_t arr[], int n) int findMedian(size_t arr[], int n)
{ {
std::sort(arr, arr + n); // Sort the array std::sort(arr, arr + n); // Sort the array
return arr[n / 2]; // Return middle element return arr[n / 2]; // Return middle element
} }
// It searches for x in arr[l..r], and partitions the array // searches for x in arr[l..r], and partitions the array around x
// around x.
int partition(size_t arr[], int l, int r, int x) int partition(size_t arr[], int l, int r, int x)
{ {
// Search for x in arr[l..r] and move it to end // Search for x in arr[l..r] and move it to end
@ -90,12 +91,12 @@ int partition(size_t arr[], int l, int r, int x)
// Standard partition algorithm // Standard partition algorithm
i = l; i = l;
for (int j = l; j <= r - 1; j++) for (int j = l; j < r; j++)
{ {
if (arr[j] <= x) if (arr[j] <= x)
{ {
swap(&arr[i], &arr[j]);
i++; i++;
swap(&arr[i], &arr[j]);
} }
} }
swap(&arr[i], &arr[r]); swap(&arr[i], &arr[r]);

View File

@ -3,13 +3,15 @@
size_t pivotPartition(std::vector<size_t>& values, size_t left, size_t right) { size_t pivotPartition(std::vector<size_t>& values, size_t left, size_t right) {
size_t pivotIndex = left + (right - left) / 2; size_t pivotIndex = left + (right - left) / 2;
size_t pivotValue = values[pivotIndex]; size_t pivotValue = values[pivotIndex];
size_t i = left; int i = left;
size_t j = right; int j = right;
while (i <= j) { while (i <= j) {
while (values[i] < pivotValue) { while (values[i] < pivotValue)
{
i++; i++;
} }
while (values[j] > pivotValue) { while (values[j] > pivotValue)
{
j--; j--;
} }
if (i <= j) { if (i <= j) {
@ -21,7 +23,8 @@ size_t pivotPartition(std::vector<size_t>& values, size_t left, size_t right) {
return i; return i;
} }
void quicksort(std::vector<size_t>& values, size_t left, size_t right) { void quicksort(std::vector<size_t>& values, size_t left, size_t right)
{
if (left < right) { if (left < right) {
size_t pivotIndex = pivotPartition(values, left, right); size_t pivotIndex = pivotPartition(values, left, right);
quicksort(values, left, pivotIndex - 1); quicksort(values, left, pivotIndex - 1);
@ -29,7 +32,8 @@ void quicksort(std::vector<size_t>& values, size_t left, size_t right) {
} }
} }
size_t getQuicksortMedian(std::vector<size_t> values, size_t i) { size_t getQuicksortMedian(std::vector<size_t> values, size_t i)
{
//std::qsort(numbers); // only takes array param -> custom implementation with vector //std::qsort(numbers); // only takes array param -> custom implementation with vector
quicksort(values, 0, values.size() - 1); quicksort(values, 0, values.size() - 1);
return values[i]; return values[i];

View File

@ -2,42 +2,112 @@
#include <vector> #include <vector>
/* // Lomuto Partitioning
// Pseudo code Alux Nimmervoll, Algo vo3 int randomizedPartition(std::vector<size_t>& values, int p, int r)
// Anmerkung: code funktioniert! {
int i = p + rand() % (r - p); // generate a random number in {p, ..., r}
swap(&values[i], &values[r]);
RANDOMIZED-SELECT(A,p,r,i) int pivotValue = values[r];
if (p==r) then return A[p]
q=RANDOMIZED_PARTITION(A,p,r) //Pivot Element A[q]
k=q-p+1 //Anzahl Elemente A[p..q]
if (i==k) then return A[q] //Pivot ist das gesuchte
elseif (i<k)
then return RANDOMIZED-SELECT(A,p,q-1,i)
else return RANDOMIZED-SELECT(A,q+1,r,i-k)
*/
size_t randomizedPartition(std::vector<size_t>& values, size_t p, size_t r) {
size_t i = p + rand() % (r - p + 1); // generate a random number in {p, ..., r}
std::swap(values[i], values[r]);
size_t pivotValue = values[r];
i = p - 1; i = p - 1;
for (size_t j = p; j < r; j++) { for (int j = p; j < r; j++)
if (values[j] <= pivotValue) { {
if (values[j] <= pivotValue)
{
i++; i++;
std::swap(values[i], values[j]); swap(&values[i], &values[j]);
} }
} }
std::swap(values[i + 1], values[r]); swap(&values[i + 1], &values[r]);
return i + 1; return (i + 1);
} }
size_t randomizedSelect(std::vector<size_t> values, size_t p, size_t r, size_t i) // TODO: Hoare Partitioning
// https://www.geeksforgeeks.org/quicksort-using-random-pivoting/
int randomizedPartition2(std::vector<size_t>& values, int low, int high)
{ {
int i = low + rand() % (high - low); // generate a random number in {p, ..., r}
std::swap(values[i], values[low]);
int pivot = values[low];
i = low - 1;
int j = high + 1;
while (true) {
// Find leftmost element greater than
// or equal to pivot
do {
i++;
} while (values[i] < pivot);
// Find rightmost element smaller than
// or equal to pivot
do {
j--;
} while (values[j] > pivot);
// If two pointers met
if (i >= j)
return j;
std::swap(values[i], values[j]);
}
}
int randomizedPartition3(std::vector<size_t>& values, int l, int r)
{
int n = r - l + 1;
int pivot = rand() % n;
std::swap(values[l + pivot], values[r]);
int x = values[r], i = l;
for (int j = l; j <= r - 1; j++)
{
if (values[j] <= x)
{
std::swap(values[i], values[j]);
i++;
}
}
std::swap(values[i], values[r]);
return i;
}
int randomizedSelect(std::vector<size_t> values, int p, int r, int i)
{
/*
// Partition the array around a random element and
// get position of pivot element in sorted array
int pos = randomizedPartition(values, p, r);
// If position is same as k
if (pos - p == i - 1)
return values[pos];
if (pos - p > i - 1) // If position is more, recur for left subarray
return randomizedSelect(values, p, pos - 1, i);
// Else recur for right subarray
return randomizedSelect(values, pos + 1, r, i - pos + p - 1);
*/
// Pseudo code Alux Nimmervoll, Algo vo3
// Anmerkung: code funktioniert!
/*
RANDOMIZED-SELECT(A,p,r,i)
if (p==r) then return A[p]
q=RANDOMIZED_PARTITION(A,p,r) //Pivot Element A[q]
k=q-p+1 //Anzahl Elemente A[p..q]
if (i==k) then return A[q] //Pivot ist das gesuchte
elseif (i<k)
then return RANDOMIZED-SELECT(A,p,q-1,i)
else return RANDOMIZED-SELECT(A,q+1,r,i-k)
*/
if (p == r) return values[p]; if (p == r) return values[p];
size_t q = randomizedPartition(values, p, r); // Pivot Element A[q] //int q = randomizedPartition(values, p, r); // Pivot Element A[q]
size_t k = q - p + 1; // Anzahl Elemente A[p..q] //int q = randomizedPartition2(values, p, r); // Pivot Element A[q]
int q = randomizedPartition3(values, p, r); // Pivot Element A[q]
int k = q - p + 1; // Anzahl Elemente A[p..q]
if (i == k) return values[q]; // Pivot ist das gesuchte if (i == k) return values[q]; // Pivot ist das gesuchte
else if (i < k) else if (i < k)
return randomizedSelect(values, p, q - 1, i); return randomizedSelect(values, p, q - 1, i);