kdtree/geometry.h

109 lines
2.7 KiB
C
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

// Forward declarations
struct Point;
struct Node {
Node(int axis, Point *point, Node *left, Node *right)
: axis(axis), point(point), left(left), right(right) {}
int axis;
Point *point;
Node *left;
Node *right;
};
struct Triangle {
Triangle(Point *p1, Point *p2, Point *p3) : p1(p1), p2(p2), p3(p3) {}
Point *p1;
Point *p2;
Point *p3;
};
struct Vector {
Vector(float coordinates[3]) : c(coordinates) {}
// Avoid having to write vector.c[index], instead allow vector[index]
float operator[](int i) const { return c[i]; }
float &operator[](int i) { return c[i]; }
Vector operator+(const Vector &other) const {
return Vector(new float[3]{c[0] + other.c[0], c[1] + other.c[1], c[2] + other.c[2]});
}
Vector operator-(const Vector &other) const {
return Vector(new float[3]{c[0] - other.c[0], c[1] - other.c[1], c[2] - other.c[2]});
}
Vector operator*(float scalar) const {
return Vector(new float[3]{c[0] * scalar, c[1] * scalar, c[2] * scalar});
}
Vector cross(const Vector &other) {
// TODO
return other;
}
float dot(const Vector &other) {
// TODO
return 0.0;
}
float *c;
};
struct Point {
Point(float coordinates[3], Triangle *triangle)
: pos(Vector(coordinates)), triangle(triangle) {}
Vector pos;
Triangle *triangle;
};
struct Ray {
Ray(Vector origin, Vector direction) : origin(origin), direction(direction) {}
Vector origin;
Vector direction;
bool intersects_triangle(Triangle *triangle) {
// Ray-triangle-intersection with the MöllerTrumbore algorithm
// https://en.wikipedia.org/wiki/M%C3%B6ller%E2%80%93Trumbore_intersection_algorithm
const float EPSILON = 0.0000001;
Vector p1 = triangle->p1->pos;
Vector p2 = triangle->p2->pos;
Vector p3 = triangle->p3->pos;
Vector edge1 = p2 - p1;
Vector edge2 = p3 - p1;
Vector h = direction.cross(edge2);
float a = edge1.dot(h);
if (a > -EPSILON && a < EPSILON) return false; // This ray is parallel to this triangle.
float f = 1.0 / a;
Vector s = origin - p1;
float u = f * s.dot(h);
if (u < 0.0 || u > 1.0) return false;
Vector q = s.cross(edge1);
float v = f * direction.dot(q);
if (v < 0.0 || u + v > 1.0) return false;
// At this stage we can compute t to find out where the intersection point is on the
// line.
float t = f * edge2.dot(q);
if (t > EPSILON) {
return true;
} else {
// This means that there is a line intersection but not a ray intersection.
return false;
}
}
};