#include "geometry.h" #include #include #include #include #include class KDTree { public: KDTree(std::vector points) { root = build(points, 0); } ~KDTree() = default; // TODO: Delete all allocated Nodes Point *intersect_ray(Ray ray) { return intersect_ray_recurse(ray, root, 1000.0); } std::string to_string() { std::string str = ""; to_string_recurse(str, root, 0); return str; } private: Node *root; int MAX_DEPTH = 500; // Returns a comparator lambda for assessing which of the two points has a // greater coordinate in the given axis. auto get_point_comparator(int axis) { return [axis](Point *p1, Point *p2) { return p1->coordinates[axis] < p2->coordinates[axis]; }; } Node *build(std::vector points, int depth) { // Exit conditions if (points.empty() || depth > MAX_DEPTH) { return nullptr; } // Select axis by choosing the one with maximal extent float max_extent = 0; int axis = 0; for (int it_axis = 0; it_axis < 3; it_axis++) { // Get extent along this axis auto comparator = get_point_comparator(it_axis); Point *min = *std::min_element(points.begin(), points.end(), comparator); Point *max = *std::max_element(points.begin(), points.end(), comparator); float extent = max->coordinates[it_axis] - min->coordinates[it_axis]; // Is it greater than max_extent? if (extent > max_extent) { // If so, make this the splitting axis max_extent = extent; axis = it_axis; } } // Choose the median as the pivot and sort the points into // left-of-median and right-of-median using nth_element int middle = points.size() / 2; std::nth_element(points.begin(), points.begin() + middle, points.end(), get_point_comparator(axis)); Point *median = points[middle]; // TODO: This copies. Can we split the vector into two without copying? std::vector left_of_median(points.begin(), points.begin() + middle); std::vector right_of_median(points.begin() + middle + 1, points.end()); // Create node, recursively call to construct subtree return new Node(axis, median, build(left_of_median, depth + 1), build(right_of_median, depth + 1)); } Point *intersect_ray_recurse(Ray ray, Node *node, float max_distance) { // Exit condition: There was no collision if (node == nullptr) { return nullptr; } // Is the left or right child node closer to this point? Node *near = ray.origin[node->axis] > node->point->coordinates[node->axis] ? node->right : node->left; Node *far = near == node->right ? node->left : node->right; std::cout << "Checking " << node->point->coordinates[0] << ", " << node->point->coordinates[1] << ", " << node->point->coordinates[2] << ", " << std::endl; // Check for collisions in this order (stopping if an intersection is found): // 1. In the nearer section // 2. With the point in this current node // 3. In the further section // If the axes are not parallel, our max_distance decreases, since we've already covered // some area. `t` represents the distance from this node to the splitting plane. float t = ray.direction[node->axis] != 0.0 ? (node->point->coordinates[node->axis] - ray.origin[node->axis]) / ray.direction[node->axis] : max_distance; Point *near_result = intersect_ray_recurse(ray, near, t); // If the nearer segment had a collision, we're done! We're only interested in the closest // collision. if (near_result != nullptr) { return near_result; } // No collision in the nearer side, so check for a collision directly here if (ray.intersects_triangle(node->point->triangle)) { // We do have a collision here, so we're done and can return this point! return node->point; } // No collision here either. Does it make sense to also check the far node? // Only if the axes are not parallel and if that area is not behind us if (ray.direction[node->axis] != 0.0 && t >= 0.0) { // It does make sense to check the far node. // For this, calculate a new ray origin ... float new_origin[3]{ray.origin[0] + t * ray.direction[0], ray.origin[1] + t * ray.direction[1], ray.origin[2] + t * ray.direction[2]}; // ... and continue towards that direction, but with the new origin (we can // leave behind what we already checked) return intersect_ray_recurse(Ray(new_origin, ray.direction), far, max_distance - t); } // If nothing worked, return a nullptr return nullptr; } void to_string_recurse(std::string &str, Node *node, int depth) { if (node == nullptr) { return; } Point *point = node->point; str += std::string(depth, '-') + std::to_string(point->coordinates[0]) + ", " + std::to_string(point->coordinates[1]) + ", " + std::to_string(point->coordinates[2]) + " with axis " + std::to_string(node->axis) + "\n"; to_string_recurse(str, node->left, depth + 1); to_string_recurse(str, node->right, depth + 1); } };