#include #include #include // Forward declarations struct Node; struct Point; struct Triangle; struct Node { Node(int axis, Point *point, Node *left, Node *right) : axis(axis), point(point), left(left), right(right) {} int axis; Point *point; Node *left; Node *right; }; struct Triangle { Triangle(Point *p1, Point *p2, Point *p3) : p1(p1), p2(p2), p3(p3) {} Point *p1; Point *p2; Point *p3; }; struct Point { Point(float coordinates[3], Triangle *triangle) : coordinates(coordinates), triangle(triangle) {} float *coordinates; Triangle *triangle; }; class KDTree { public: KDTree(std::vector points) { root = build(points, 0); } ~KDTree() = default; private: Node *root; int MAX_DEPTH = 500; Node *build(std::vector points, int depth) { // Exit conditions if (points.empty() || depth > MAX_DEPTH) { return nullptr; } // Select axis by choosing the one with maximal extent float max_extent = 0; int axis = 0; for (int it_axis = 0; it_axis < 3; it_axis++) { // Get extent along this axis auto comparator = [it_axis](Point *p1, Point *p2) { return p1->coordinates[it_axis] < p2->coordinates[it_axis]; }; Point *min = *std::max_element(points.begin(), points.end(), comparator); Point *max = *std::max_element(points.begin(), points.end(), comparator); float extent = max->coordinates[it_axis] - min->coordinates[it_axis]; // Is it greater than max_extent? if (extent > max_extent) { // If so, make this the splitting axis max_extent = extent; axis = it_axis; } } // Choose the median as the pivot and sort the points into // left-of-median and right-of-median using nth_element int middle = points.size() / 2; // TODO: Code duplication from the comparator in the earlier axis assessment // loop std::nth_element(points.begin(), points.begin() + middle, points.end(), [axis](Point *p1, Point *p2) { return p1->coordinates[axis] < p2->coordinates[axis]; }); Point *median; float pivot; // TODO: This copies. Can we split the vector into two without copying? std::vector left_of_median(points.begin(), points.begin() + middle); std::vector right_of_median(points.begin() + middle, points.end()); // Create node, recursively call to construct subtree return new Node(axis, median, build(left_of_median, depth + 1), build(right_of_median, depth + 1)); } };