Points hold multiple Triangles; fix recursive intersection

Also comments and other minor fixes.
This commit is contained in:
karl 2021-01-16 22:21:08 +01:00
parent 21c0e9c609
commit 72df366761
3 changed files with 85 additions and 45 deletions

View File

@ -1,5 +1,6 @@
#pragma once
#include <list>
#include <vector>
// Forward declarations
@ -21,6 +22,16 @@ struct Vector {
return Vector(c[0] - other.c[0], c[1] - other.c[1], c[2] - other.c[2]);
}
// Arbitrary but functional definition of '<', primarily for use in an std::map.
bool operator<(const Vector &other) const {
if ((c[2] < other.c[2])) { return true; }
if ((c[2] == other.c[2]) && (c[1] < other.c[1])) { return true; }
if ((c[2] == other.c[2]) && (c[1] == other.c[1]) && (c[0] < other.c[0])) { return true; }
return false;
}
// Component-wise multiplication with a scalar
Vector operator*(float scalar) const {
return Vector(c[0] * scalar, c[1] * scalar, c[2] * scalar);
}
@ -36,18 +47,22 @@ struct Vector {
};
struct Point {
Point(Vector pos, Triangle *triangle) : pos(pos), triangle(triangle) {}
Point(Vector pos) : pos(pos) {}
Point(Vector pos, std::list<Triangle *> triangles) : pos(pos), triangles(triangles) {}
Vector pos;
Triangle *triangle;
std::list<Triangle *> triangles;
};
struct Triangle {
Triangle(Vector p1, Vector p2, Vector p3) : p1(p1), p2(p2), p3(p3) {}
std::vector<Point *> create_point_objects() {
return std::vector<Point *>{new Point(p1, this), new Point(p2, this), new Point(p3, this)};
return std::vector<Point *>{new Point(p1, std::list<Triangle *>{this}),
new Point(p2, std::list<Triangle *>{this}),
new Point(p3, std::list<Triangle *>{this})};
}
Vector p1;
@ -74,7 +89,7 @@ struct Ray {
Vector direction;
bool intersects_triangle(Triangle *triangle) {
bool intersects_triangle(const Triangle *triangle, Vector &result, float &t) {
// Ray-triangle-intersection with the MöllerTrumbore algorithm
// https://en.wikipedia.org/wiki/M%C3%B6ller%E2%80%93Trumbore_intersection_algorithm
const float EPSILON = 0.0000001;
@ -103,8 +118,9 @@ struct Ray {
// At this stage we can compute t to find out where the intersection point is on the
// line.
float t = f * edge2.dot(q);
t = f * edge2.dot(q);
if (t > EPSILON) {
result = origin + direction * t;
return true;
} else {
// This means that there is a line intersection but not a ray intersection.

View File

@ -2,6 +2,7 @@
#include "geometry.h"
#include <algorithm>
#include <chrono>
#include <glm/glm.hpp>
#include <iostream>
#include <string>
@ -9,11 +10,32 @@
class KDTree {
public:
KDTree(std::vector<Point *> points) { root = build(points, 0); }
KDTree(std::vector<Point *> points) {
std::cout << "Starting to build tree with " << points.size() << " points took ";
auto start = std::chrono::high_resolution_clock::now();
root = build(points, 0);
auto end = std::chrono::high_resolution_clock::now();
std::cout << std::chrono::duration_cast<std::chrono::microseconds>(end - start).count()
<< " microseconds" << std::endl;
}
~KDTree() = default; // TODO: Delete all allocated Nodes
Triangle *intersect_ray(Ray ray) { return intersect_ray_recurse(ray, root, 1000.0, 0); }
const Triangle *intersect_ray(const Ray ray, Vector &result) {
auto start = std::chrono::high_resolution_clock::now();
float nearest = 1000.0; // Initial max distance
const Triangle *nearest_triangle = nullptr;
intersect_ray_recurse(nearest_triangle, result, ray, root, 0, nearest);
auto end = std::chrono::high_resolution_clock::now();
std::cout << "Intersection took "
<< std::chrono::duration_cast<std::chrono::microseconds>(end - start).count()
<< " microseconds" << std::endl;
return nearest_triangle;
}
std::string to_string() {
std::string str = "";
@ -87,50 +109,51 @@ class KDTree {
build(right_of_median, depth + 1));
}
Triangle *intersect_ray_recurse(Ray ray, Node *node, float max_distance, int depth) {
// Exit condition: There was no collision
if (node == nullptr) { return nullptr; }
void intersect_ray_recurse(const Triangle *&nearest_triangle, Vector &result, Ray ray,
Node *node, int depth, float &nearest) {
// Exit condition: This node was iterated towards, but does not exist
if (node == nullptr) { return; }
// Is the left or right child node closer to this point?
// Check for a collision here
// Iterate over all Triangles which this Point is involved in
for (const Triangle *triangle : node->point->triangles) {
Vector current_result(0, 0, 0);
float current_distance;
// If we have a collision, and it is closer to the ray origin than the closest previous
// collision, remember it
if (ray.intersects_triangle(triangle, current_result, current_distance)) {
if (current_distance < nearest) {
nearest = current_distance;
nearest_triangle = triangle;
result = current_result;
}
}
}
// Is the ray origin within the left or right child node bounding box?
Node *near =
ray.origin[node->axis] > node->point->pos[node->axis] ? node->right : node->left;
Node *far = near == node->right ? node->left : node->right;
// Check for collisions in this order (stopping if an intersection is found):
// 1. In the nearer section
// 2. With the point in this current node
// 3. In the further section
if (ray.direction[node->axis] == 0.0) {
// The ray is parallel to the splitting axis, so we only need to check within this box.
intersect_ray_recurse(nearest_triangle, result, ray, near, depth + 1, nearest);
} else {
// Calculate the distance from the ray origin to the splitting axis
float t =
(node->point->pos[node->axis] - ray.origin[node->axis]) / ray.direction[node->axis];
// If the axes are not parallel, our max_distance decreases, since we've already covered
// some area. `t` represents the distance from this node to the splitting plane.
float t = ray.direction[node->axis] != 0.0
? (node->point->pos[node->axis] - ray.origin[node->axis]) /
ray.direction[node->axis]
: max_distance;
Triangle *near_result = intersect_ray_recurse(ray, near, t, depth + 1);
// Check this side for intersections up to the distance of the currently best
// intersection
intersect_ray_recurse(nearest_triangle, result, ray, near, depth + 1, nearest);
// If the nearer segment had a collision, we're done! We're only interested in the closest
// collision.
if (near_result != nullptr) { return near_result; }
// No collision in the nearer side, so check for a collision directly here
if (ray.intersects_triangle(node->point->triangle)) {
// We do have a collision here, so we're done and can return this point!
return node->point->triangle;
// If the far side is closer than the distance to the best current intersection, check
// that side too
if (t < nearest) {
intersect_ray_recurse(nearest_triangle, result, ray, far, depth + 1, nearest);
}
}
// No collision here either. Does it make sense to also check the far node?
// Only if the axes are not parallel and if that area is not behind us
if (ray.direction[node->axis] != 0.0 && t >= 0.0) {
// It does make sense to check the far node.
// For this, calculate a new ray origin and continue towards that direction, but with
// the new origin (we can leave behind what we already checked)
return intersect_ray_recurse(Ray(ray.origin + ray.direction * t, ray.direction), far,
max_distance - t, depth + 1);
}
// If nothing worked, return a nullptr
return nullptr;
}
void to_string_recurse(std::string &str, Node *node, int depth) {

View File

@ -16,8 +16,9 @@ int main() {
std::cout << tree.to_string();
// Intersection check
Triangle *intersection =
tree.intersect_ray(Ray(new float[3]{0.5, 0.5, -1.0}, new float[3]{0.0, 0.1, 1.0}));
Vector result(0, 0, 0);
const Triangle *intersection =
tree.intersect_ray(Ray(new float[3]{0.5, 0.5, -1.0}, new float[3]{0.0, 0.1, 1.0}), result);
if (intersection != nullptr) { std::cout << "Hit!" << std::endl; }