game-of-life-cpp/main.cpp

510 lines
15 KiB
C++

#include <omp.h>
#include <fstream>
#include <iostream>
#include <sstream>
#ifdef __APPLE__
#include <OpenCL/cl.hpp>
#else
#include <CL/cl.hpp>
#endif
#include "Timing.h"
#define LIVE_CELL 1 // 'x' in the input data
#define DEAD_CELL 0 // '.' in the input data
enum Mode {
SEQ,
OMP,
OCL
};
// Using this struct seems to be more performant than just passing
// a bool** around functions. However, also adding the neighbor_count
// made performance worse.
struct World {
World(int size_x, int size_y) : size_x(size_x), size_y(size_y) {
data = new bool*[size_y];
for (int y = 0; y < size_y; y++) {
data[y] = new bool[size_x];
}
}
~World() {
for (int y = 0; y < size_y; y++) {
delete data[y];
}
delete data;
}
bool **data;
// All following functions are just convenience shorthands.
// They are inlined so it doesn't make a difference in performance.
inline bool get_value(int x, int y) {
return data[y][x];
}
inline void set_alive(int x, int y) {
data[y][x] = LIVE_CELL;
}
inline void set_dead(int x, int y) {
data[y][x] = DEAD_CELL;
}
inline void set(int x, int y, bool val) {
data[y][x] = val;
}
inline int get_num_neighbors(int left, int right, int up, int down, int x, int y) {
return
get_value(left, down) +
get_value(x, down) +
get_value(right, down) +
get_value(left, y) +
get_value(right, y) +
get_value(left, up) +
get_value(x, up) +
get_value(right, up);
}
int size_x;
int size_y;
};
void generation_omp(World &world, int *neighbor_counts) {
// Shorthand to prevent always having to access via world
int size_x = world.size_x;
int size_y = world.size_y;
// Set the neighbor count array according to the world.
// We handle x == 0 and x == size_x - 1 separately in order to avoid all the constant if checks.
int loop_x = size_x - 1;
#pragma omp parallel for
for (int y = 0; y < size_y; y++) {
// Wrap y
// This happens rarely enough that this if isn't a huge problem, and it would be tedious
// to handle both this and x manually.
int up = y - 1;
int down = y + 1;
if (up < 0)
up += size_y;
else if (down >= size_y)
down -= size_y;
// Handle x == 0
neighbor_counts[y * size_x + 0] = world.get_num_neighbors(loop_x, 1, up, down, 0, y);
// Handle 'normal' x
for (int x = 1; x < loop_x; x++) {
neighbor_counts[y * size_x + x] = world.get_num_neighbors(x - 1, x + 1, up, down, x, y);
}
// Handle x == loop_x (== size_x - 1, we're just re-using the variable
neighbor_counts[y * size_x + loop_x] = world.get_num_neighbors(loop_x - 1, 0, up, down, loop_x, y);
}
// Update cells accordingly
#pragma omp parallel for
for (int y = 0; y < world.size_y; y++) {
for (int x = 0; x < world.size_x; x++) {
char this_cell = world.get_value(x, y);
int neighbors = neighbor_counts[y * size_x + x];
world.data[y][x] = (neighbors == 3) + this_cell * (neighbors == 2);
}
}
}
void generation_seq(World &world, int *neighbor_counts) {
// Shorthand to prevent always having to access via world
int size_x = world.size_x;
int size_y = world.size_y;
// Set the neighbor count array according to the world.
// We handle x == 0 and x == size_x - 1 separately in order to avoid all the constant if checks.
int loop_x = size_x - 1;
for (int y = 0; y < size_y; y++) {
// Wrap y
// This happens rarely enough that this if isn't a huge problem, and it would be tedious
// to handle both this and x manually.
int up = y - 1;
int down = y + 1;
if (up < 0)
up += size_y;
else if (down >= size_y)
down -= size_y;
// Handle x == 0
neighbor_counts[y * size_x + 0] = world.get_num_neighbors(loop_x, 1, up, down, 0, y);
// Handle 'normal' x
for (int x = 1; x < loop_x; x++) {
neighbor_counts[y * size_x + x] = world.get_num_neighbors(x - 1, x + 1, up, down, x, y);
}
// Handle x == loop_x (== size_x - 1, we're just re-using the variable
neighbor_counts[y * size_x + loop_x] = world.get_num_neighbors(loop_x - 1, 0, up, down, loop_x, y);
}
// Update cells accordingly
for (int y = 0; y < world.size_y; y++) {
for (int x = 0; x < world.size_x; x++) {
char this_cell = world.get_value(x, y);
int neighbors = neighbor_counts[y * size_x + x];
world.data[y][x] = (neighbors == 3) + this_cell * (neighbors == 2);
}
}
}
void print_usage() {
std::cerr << "Usage: gol --mode seq|omp|ocl [--threads number] [--device cpu|gpu] --load infile.gol --save outfile.gol --generations number [--measure]" << std::endl;
}
void main_opencl(std::string infile, std::string outfile, int num_generations, bool measure, bool use_gpu) {
Timing *timing = Timing::getInstance();
// Get Nvidia CUDA platform
std::vector<cl::Platform> all_platforms;
cl::Platform::get(&all_platforms);
if (all_platforms.size()==0) {
std::cout<<" No platforms found. Check OpenCL installation!\n";
exit(1);
}
cl::Platform default_platform=all_platforms[0];
// Use the first device (in my case, GPU is on this platform)
std::vector<cl::Device> all_devices;
default_platform.getDevices(CL_DEVICE_TYPE_ALL, &all_devices);
if(all_devices.size()==0){
std::cout<<" No devices found. Check OpenCL installation!\n";
exit(1);
}
cl::Device default_device=all_devices[0];
// The context links device and platform
cl::Context context({default_device});
// Load kernel code from file into Sources
cl::Program::Sources sources;
std::ifstream file("gol.cl"); //taking file as inputstream
std::string kernel_code;
if (file) {
std::ostringstream ss;
ss << file.rdbuf();
kernel_code = ss.str();
} else {
std::cout << "Error: Couldn't read Kernel source!" << std::endl;
}
sources.push_back({kernel_code.c_str(), kernel_code.length()});
// Create a program with the previously defined context and (kernel) sources
cl::Program program(context, sources);
if (program.build({default_device}) != CL_SUCCESS) {
std::cout << "Error building: " << program.getBuildInfo<CL_PROGRAM_BUILD_LOG>(default_device) << std::endl;
exit(1);
}
// Setup on CPU: Load files
// Read in the start state
std::ifstream world_file;
world_file.open(infile);
// Get x and y size
std::string x_str, y_str;
getline(world_file, x_str, ',');
getline(world_file, y_str);
int size_x = std::stoi(x_str);
int size_y = std::stoi(y_str);
// Two arrays because one will always hold the previous status
// For now, we only put data into `world`
bool *world = new bool[size_x * size_y];
bool *result = new bool[size_x * size_y];
// Set the data
for (int y = 0; y < size_y; y++) {
std::string line;
getline(world_file, line);
for (int x = 0; x < size_x; x++) {
// The chars '.' and 'x' are mapped to the booleans 0 and 1.
// This speeds up the calculation of the neighbors -- no if-checks
// needed, just sum the values.
world[y * size_x + x] = 1 ? line[x] == 'x' : 0;
}
}
world_file.close();
// Put the size into an array so it can be passed to the kernel
int size[2] = {size_x, size_y};
int n = size_x * size_y;
// Allocate space on the GPU
cl::Buffer buffer_previous(context, CL_MEM_READ_WRITE, sizeof(bool) * n);
cl::Buffer buffer_new(context, CL_MEM_READ_WRITE, sizeof(bool) * n);
cl::Buffer buffer_size(context, CL_MEM_READ_WRITE, sizeof(int) * 2);
// Create queue of commands that the GPU will execute
cl::CommandQueue queue(context, default_device);
// Push write commands to queue
queue.enqueueWriteBuffer(buffer_previous, CL_TRUE, 0, sizeof(bool) * n, world);
queue.enqueueWriteBuffer(buffer_new, CL_TRUE, 0, sizeof(bool) * n, result);
queue.enqueueWriteBuffer(buffer_size, CL_TRUE, 0, sizeof(int) * 2, size);
// Create the kernel, which uses the `generation` method in our program (which was created from the kernel code)
cl::Kernel gol_kernel(program, "generation");
timing->stopSetup();
timing->startComputation();
// Actually do the generations
for (int i = 0; i < num_generations; i++) {
// Update the arguments in the kernel
gol_kernel.setArg(0, buffer_previous);
gol_kernel.setArg(1, buffer_new);
gol_kernel.setArg(2, buffer_size);
// Run it
queue.enqueueNDRangeKernel(gol_kernel, cl::NullRange, cl::NDRange(n), cl::NullRange);
queue.finish();
// Swap the previous buffer with the new buffer, as we will want to use our result from this loop
// as the input of the next loop (overwriting the previous result, which is not needed anymore)
std::swap(buffer_previous, buffer_new);
}
queue.finish();
timing->stopComputation();
timing->startFinalization();
// Since we swap after every generation, we need to proceed differently depending on
// whether we're in swapped mode or not at the moment
if (num_generations % 2 == 0) {
queue.enqueueReadBuffer(buffer_previous, CL_TRUE, 0, sizeof(bool) * n, result);
} else {
queue.enqueueReadBuffer(buffer_new, CL_TRUE, 0, sizeof(bool) * n, result);
}
// Write the result
std::ofstream result_file;
result_file.open(outfile);
result_file << size_x << "," << size_y << '\n';
for (int y = 0; y < size_y; y++) {
std::string line;
for (int x = 0; x < size_x; x++) {
// Convert 1 and 0 to 'x' and '.' again
line += result[y * size_x + x] ? 'x' : '.';
}
result_file << line << '\n';
}
result_file.close();
delete[] world;
delete[] result;
timing->stopFinalization();
}
void main_classic(std::string infile, std::string outfile, int num_generations, bool measure, Mode mode) {
Timing *timing = Timing::getInstance();
// Read in the start state
std::ifstream world_file;
world_file.open(infile);
// Get x and y size
std::string x_str, y_str;
getline(world_file, x_str, ',');
getline(world_file, y_str);
int size_x = std::stoi(x_str);
int size_y = std::stoi(y_str);
World world(size_x, size_y);
// Set the data
for (int y = 0; y < size_y; y++) {
std::string line;
getline(world_file, line);
for (int x = 0; x < size_x; x++) {
// The chars '.' and 'x' are mapped to the booleans 0 and 1.
// This speeds up the calculation of the neighbors -- no if-checks
// needed, just sum the values.
world.set(x, y, 1 ? line[x] == 'x' : 0);
}
}
world_file.close();
// In this separate array, we keep track of how many live neighbors
// a certain cell has. This is because immediately updating based
// on the number of neighbors would mess with later calculations
// of adjacent cells.
int *neighbor_counts = new int[world.size_y * world.size_x];
timing->stopSetup();
timing->startComputation();
// Do some generations
if (mode == Mode::SEQ) {
for (int i = 0; i < num_generations; i++) {
generation_seq(world, neighbor_counts);
}
} else if (mode == Mode::OMP) {
for (int i = 0; i < num_generations; i++) {
generation_omp(world, neighbor_counts);
}
}
timing->stopComputation();
timing->startFinalization();
// Write the result
std::ofstream result_file;
result_file.open(outfile);
result_file << size_x << "," << size_y << '\n';
for (int y = 0; y < size_y; y++) {
std::string line;
getline(world_file, line);
for (int x = 0; x < size_x; x++) {
// Convert 1 and 0 to 'x' and '.' again
line += world.get_value(x, y) ? 'x' : '.';
}
result_file << line << '\n';
}
result_file.close();
delete neighbor_counts;
timing->stopFinalization();
}
int main(int argc, char* argv[]) {
Timing *timing = Timing::getInstance();
// Setup.
timing->startSetup();
// Parse command line arguments
std::string infile;
std::string outfile;
Mode mode = Mode::SEQ;
bool use_gpu = false;
int num_generations = 0;
bool measure = false;
if (argc < 8) {
print_usage();
return 1;
}
// Parse arguments
for (int i = 1; i < argc; i++) {
if (std::string(argv[i]) == "--load") {
if (i + 1 < argc) {
infile = argv[i+1];
} else {
print_usage();
return 1;
}
} else if (std::string(argv[i]) == "--save") {
if (i + 1 < argc) {
outfile = argv[i+1];
} else {
print_usage();
return 1;
}
} else if (std::string(argv[i]) == "--mode") {
if (i + 1 < argc) {
if (std::string(argv[i+1]) == "seq") {
mode = Mode::SEQ;
} else if (std::string(argv[i+1]) == "omp") {
mode = Mode::OMP;
} else if (std::string(argv[i+1]) == "ocl") {
mode = Mode::OCL;
} else {
print_usage();
return 1;
}
} else {
print_usage();
return 1;
}
} else if (std::string(argv[i]) == "--threads") {
if (i + 1 < argc) {
omp_set_num_threads(std::stoi(argv[i+1]));
} else {
print_usage();
return 1;
}
// TODO: This parameter isn't really needed anymore as we only use the GPU now
} else if (std::string(argv[i]) == "--device") {
if (i + 1 < argc) {
if (std::string(argv[i+1]) == "cpu") {
use_gpu = false;
} else if (std::string(argv[i+1]) == "gpu") {
use_gpu = true;
} else {
print_usage();
return 1;
}
} else {
print_usage();
return 1;
}
} else if (std::string(argv[i]) == "--generations") {
if (i + 1 < argc) {
num_generations = std::stoi(argv[i+1]);
} else {
print_usage();
return 1;
}
} else if (std::string(argv[i]) == "--measure") {
measure = true;
}
}
// If OpenCL was demanded, run that function.
if (mode == Mode::OCL) {
main_opencl(infile, outfile, num_generations, measure, use_gpu);
} else {
main_classic(infile, outfile, num_generations, measure, mode);
}
if (measure) {
std::cout << timing->getResults() << std::endl;
}
return 0;
}