#include "geometry.h" #include #include #include #include #include #include class KDTree { public: KDTree(std::vector points) { std::cout << "Starting to build tree with " << points.size() << " points took "; auto start = std::chrono::high_resolution_clock::now(); root = build(points, 0); auto end = std::chrono::high_resolution_clock::now(); std::cout << std::chrono::duration_cast(end - start).count() << " microseconds" << std::endl; } ~KDTree() = default; // TODO: Delete all allocated Nodes const Triangle *intersect_ray(const Ray ray, Vector &result) { auto start = std::chrono::high_resolution_clock::now(); float nearest = 1000.0; // Initial max distance const Triangle *nearest_triangle = nullptr; intersect_ray_recurse(nearest_triangle, result, ray, root, 0, nearest); auto end = std::chrono::high_resolution_clock::now(); std::cout << "Intersection took " << std::chrono::duration_cast(end - start).count() << " microseconds" << std::endl; return nearest_triangle; } std::string to_string() { std::string str = ""; to_string_recurse(str, root, 0); return str; } std::vector get_lines() { std::vector lines; float mins[3] = {-1000, -1000, -1000}; float maxs[3] = {1000, 1000, 1000}; get_lines_recursive(lines, root, mins, maxs); return lines; } private: Node *root; int MAX_DEPTH = 500; // Returns a comparator lambda for assessing which of the two points has a // greater coordinate in the given axis. auto get_point_comparator(int axis) { return [axis](Point *p1, Point *p2) { return p1->pos[axis] < p2->pos[axis]; }; } Node *build(std::vector points, int depth) { // Exit conditions if (points.empty() || depth > MAX_DEPTH) { return nullptr; } // Select axis by choosing the one with maximal extent float max_extent = 0; int axis = 0; for (int it_axis = 0; it_axis < 3; it_axis++) { // Get extent along this axis auto comparator = get_point_comparator(it_axis); Point *min = *std::min_element(points.begin(), points.end(), comparator); Point *max = *std::max_element(points.begin(), points.end(), comparator); float extent = max->pos[it_axis] - min->pos[it_axis]; // Is it greater than max_extent? if (extent > max_extent) { // If so, make this the splitting axis max_extent = extent; axis = it_axis; } } // Choose the median as the pivot and sort the points into // left-of-median and right-of-median using nth_element int middle = points.size() / 2; std::nth_element(points.begin(), points.begin() + middle, points.end(), get_point_comparator(axis)); Point *median = points[middle]; // TODO: This copies. Can we split the vector into two without copying? std::vector left_of_median(points.begin(), points.begin() + middle); std::vector right_of_median(points.begin() + middle + 1, points.end()); // Create node, recursively call to construct subtree return new Node(axis, median, build(left_of_median, depth + 1), build(right_of_median, depth + 1)); } void intersect_ray_recurse(const Triangle *&nearest_triangle, Vector &result, Ray ray, Node *node, int depth, float &nearest) { // Exit condition: There was no collision if (node == nullptr) { return; } // Check for a collision here for (const Triangle *triangle : node->point->triangles) { Vector current_result(0, 0, 0); float current_distance; if (ray.intersects_triangle(triangle, current_result, current_distance)) { if (current_distance < nearest) { nearest = current_distance; nearest_triangle = triangle; result = current_result; } } } // Is the left or right child node closer to this point? Node *near = ray.origin[node->axis] > node->point->pos[node->axis] ? node->right : node->left; Node *far = near == node->right ? node->left : node->right; if (ray.direction[node->axis] == 0.0) { intersect_ray_recurse(nearest_triangle, result, ray, near, depth + 1, nearest); } else { float t = (node->point->pos[node->axis] - ray.origin[node->axis]) / ray.direction[node->axis]; // Check this side for intersections up to the distance of the currently best // intersection intersect_ray_recurse(nearest_triangle, result, ray, near, depth + 1, nearest); // If the far side is closer than the distance to the best current intersection, check // that side too if (t < nearest) { intersect_ray_recurse(nearest_triangle, result, ray, far, depth + 1, nearest); } } } void to_string_recurse(std::string &str, Node *node, int depth) { if (node == nullptr) { return; } Point *point = node->point; str += std::string(depth * 2, ' ') + std::to_string(point->pos[0]) + ", " + std::to_string(point->pos[1]) + ", " + std::to_string(point->pos[2]) + " with axis " + std::to_string(node->axis) + "\n"; to_string_recurse(str, node->left, depth + 1); to_string_recurse(str, node->right, depth + 1); } void get_lines_recursive(std::vector &lines, Node *node, float mins[3], float maxs[3]) { if (node == nullptr) return; int axis = node->axis; // Add lines for this node // We add a whole bounding box, so we need 8 points -> 12 lines lines.emplace_back(Vector(mins[0], mins[1], mins[2])); lines.emplace_back(Vector(maxs[0], mins[1], mins[2])); lines.emplace_back(Vector(maxs[0], mins[1], mins[2])); lines.emplace_back(Vector(maxs[0], maxs[1], mins[2])); lines.emplace_back(Vector(maxs[0], maxs[1], mins[2])); lines.emplace_back(Vector(mins[0], maxs[1], mins[2])); lines.emplace_back(Vector(mins[0], maxs[1], mins[2])); lines.emplace_back(Vector(mins[0], mins[1], mins[2])); lines.emplace_back(Vector(mins[0], mins[1], maxs[2])); lines.emplace_back(Vector(maxs[0], mins[1], maxs[2])); lines.emplace_back(Vector(maxs[0], mins[1], maxs[2])); lines.emplace_back(Vector(maxs[0], maxs[1], maxs[2])); lines.emplace_back(Vector(maxs[0], maxs[1], maxs[2])); lines.emplace_back(Vector(mins[0], maxs[1], maxs[2])); lines.emplace_back(Vector(mins[0], maxs[1], maxs[2])); lines.emplace_back(Vector(mins[0], mins[1], maxs[2])); lines.emplace_back(Vector(mins[0], mins[1], mins[2])); lines.emplace_back(Vector(mins[0], mins[1], maxs[2])); lines.emplace_back(Vector(maxs[0], mins[1], mins[2])); lines.emplace_back(Vector(maxs[0], mins[1], maxs[2])); lines.emplace_back(Vector(mins[0], maxs[1], mins[2])); lines.emplace_back(Vector(mins[0], maxs[1], maxs[2])); lines.emplace_back(Vector(maxs[0], maxs[1], mins[2])); lines.emplace_back(Vector(maxs[0], maxs[1], maxs[2])); // TODO: We don't actually have to add all as some are always going to overlap with the // previous lines... // Recurse on the left float new_maxs[3] = {maxs[0], maxs[1], maxs[2]}; // Copy initially new_maxs[axis] = node->point->pos[axis]; get_lines_recursive(lines, node->left, mins, new_maxs); // Recurse on the right float new_mins[3] = {mins[0], mins[1], mins[2]}; // Copy initially new_mins[axis] = node->point->pos[axis]; get_lines_recursive(lines, node->right, new_mins, maxs); } };