# sample code from https://stackoverflow.com/questions/43111029/how-to-find-the-average-colour-of-an-image-in-python-with-opencv import matplotlib matplotlib.use('TkAgg') import matplotlib.pyplot as plt import cv2 import numpy as np from skimage import io import colorsys img_path = 'input.jpg' from picamera import PiCamera camera = PiCamera() time.sleep(2) # wait for the camera to initialize camera.capture(img_path) # Read the result img = io.imread(img_path)[:, :, :] # Average color average = img.mean(axis=0).mean(axis=0) # Dominant color pixels = np.float32(img.reshape(-1, 3)) n_colors = 5 criteria = (cv2.TERM_CRITERIA_EPS + cv2.TERM_CRITERIA_MAX_ITER, 200, .1) flags = cv2.KMEANS_RANDOM_CENTERS _, labels, palette = cv2.kmeans(pixels, n_colors, None, criteria, 10, flags) _, counts = np.unique(labels, return_counts=True) dominant = palette[np.argmax(counts)] # Graph visualization avg_patch = np.ones(shape=img.shape, dtype=np.uint8)*np.uint8(average) indices = np.argsort(counts)[::-1] freqs = np.cumsum(np.hstack([[0], counts[indices]/float(counts.sum())])) rows = np.int_(img.shape[0]*freqs) dom_patch = np.zeros(shape=img.shape, dtype=np.uint8) for i in range(len(rows) - 1): dom_patch[rows[i]:rows[i + 1], :, :] += np.uint8(palette[indices[i]]) palette /= 255.0 def get_saturation(rgb_color): return colorsys.rgb_to_hsv(*rgb_color)[1] # Lid color is likely the color with the highest saturation lid_color = max(palette, key=get_saturation) fig, (ax0, ax1, ax2) = plt.subplots(1, 3, figsize=(12,4)) ax0.imshow(img) ax0.set_title('Input') ax0.axis('off') ax1.imshow(dom_patch) ax1.set_title('Dominant colors') ax1.axis('off') ax2.add_patch(matplotlib.patches.Rectangle((0, 0), 200, 200, color=lid_color)) ax2.set_title('Probable Lid Color') ax2.axis('off') plt.savefig(img_path + "_result.png")