Add example code from StackOverflow
this might be a good first approach.
This commit is contained in:
commit
32b1625fde
46
detect.py
Executable file
46
detect.py
Executable file
@ -0,0 +1,46 @@
|
||||
# sample code from https://stackoverflow.com/questions/43111029/how-to-find-the-average-colour-of-an-image-in-python-with-opencv
|
||||
|
||||
import matplotlib
|
||||
matplotlib.use('TkAgg')
|
||||
|
||||
import matplotlib.pyplot as plt
|
||||
import cv2
|
||||
import numpy as np
|
||||
from skimage import io
|
||||
|
||||
img = io.imread('https://i.stack.imgur.com/DNM65.png')[:, :, :-1]
|
||||
|
||||
# Average color
|
||||
average = img.mean(axis=0).mean(axis=0)
|
||||
|
||||
# Dominant color
|
||||
pixels = np.float32(img.reshape(-1, 3))
|
||||
|
||||
n_colors = 5
|
||||
criteria = (cv2.TERM_CRITERIA_EPS + cv2.TERM_CRITERIA_MAX_ITER, 200, .1)
|
||||
flags = cv2.KMEANS_RANDOM_CENTERS
|
||||
|
||||
_, labels, palette = cv2.kmeans(pixels, n_colors, None, criteria, 10, flags)
|
||||
_, counts = np.unique(labels, return_counts=True)
|
||||
|
||||
dominant = palette[np.argmax(counts)]
|
||||
|
||||
# Graph visualization
|
||||
avg_patch = np.ones(shape=img.shape, dtype=np.uint8)*np.uint8(average)
|
||||
|
||||
indices = np.argsort(counts)[::-1]
|
||||
freqs = np.cumsum(np.hstack([[0], counts[indices]/float(counts.sum())]))
|
||||
rows = np.int_(img.shape[0]*freqs)
|
||||
|
||||
dom_patch = np.zeros(shape=img.shape, dtype=np.uint8)
|
||||
for i in range(len(rows) - 1):
|
||||
dom_patch[rows[i]:rows[i + 1], :, :] += np.uint8(palette[indices[i]])
|
||||
|
||||
fig, (ax0, ax1) = plt.subplots(1, 2, figsize=(12,6))
|
||||
ax0.imshow(avg_patch)
|
||||
ax0.set_title('Average color')
|
||||
ax0.axis('off')
|
||||
ax1.imshow(dom_patch)
|
||||
ax1.set_title('Dominant colors')
|
||||
ax1.axis('off')
|
||||
plt.show()
|
Loading…
x
Reference in New Issue
Block a user